
Software
Configuration Guide

Transmeta™ Efficeon™ TM8x00
Hardware Revision 1.x

Code Morphing™ Software Version 6.x

Transmeta PROPRIETARY Information
Provided Under Nondisclosure Agreement

Preliminary Information—SUBJECT TO CHANGE

September 10, 2003

Property of:

Transmeta Corporation
3990 Freedom Circle
Santa Clara, CA 95054
USA
(408) 919-3000
http://www.transmeta.com

The information contained in this document is provided solely for use in connection with Transmeta products, and Transmeta
reserves all rights in and to such information and the products discussed herein. This document should not be construed as
transferring or granting a license to any intellectual property rights, whether express, implied, arising through estoppel or
otherwise. Except as may be agreed in writing by Transmeta, all Transmeta products are provided “as is” and without a
warranty of any kind, and Transmeta hereby disclaims all warranties, express or implied, relating to Transmeta’s products,
including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose and non-infringement of
third party intellectual property. Transmeta products may contain design defects or errors which may cause the products to
deviate from published specifications, and Transmeta documents may contain inaccurate information. Transmeta makes no
representations or warranties with respect to the accuracy or completeness of the information contained in this document, and
Transmeta reserves the right to change product descriptions and product specifications at any time, without notice.

Transmeta products have not been designed, tested, or manufactured for use in any application where failure, malfunction, or
inaccuracy carries a risk of death, bodily injury, or damage to tangible property, including, but not limited to, use in factory
control systems, medical devices or facilities, nuclear facilities, aircraft, watercraft or automobile navigation or communication,
emergency systems, or other applications with a similar degree of potential hazard.

Transmeta reserves the right to discontinue any product or product document at any time without notice, or to change any
feature or function of any Transmeta product or product document at any time without notice.

Trademarks: Transmeta, the Transmeta logo, Crusoe, the Crusoe logo, Efficeon, the Efficeon logo, Code Morphing, LongRun,
and combinations thereof are trademarks of Transmeta Corporation in the USA and other countries. Other product names and
brands used in this document are for identification purposes only, and are the property of their respective owners.

Copyright © 2003 Transmeta Corporation. All rights reserved.

TM8x00 Programming and Configuration Guide
September 10, 2003

2 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

Copyright
PRELIMINARY INFORMATION

SUBJECT TO CHANGE

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 3

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Directory of Contents

 Directory of Tables .. 5

 Directory of Figures ... 7

Chapter 1 Code Morphing Software Overview ... 9

Chapter 2 Code Morphing Software Image ... 11
2.1 Hardware Environment ... 11
2.2 Software Environment... 13
2.3 Configuration Overview... 14

2.3.1 ROM Sections... 14
2.3.2 Creating a CMS Image ... 15

Chapter 3 Memory Configuration .. 17
3.1 DIMM Slots.. 17
3.2 Required Memory Configuration ...18
3.3 Optional Memory Configuration .. 19

Chapter 4 OEM Configuration Table .. 23
4.1 Read-Only Fields .. 24
4.2 OEM-Managed Fields ... 26
4.3 Transmeta SKU Fields .. 34

Chapter 5 Code Morphing Software: Initial State ... 43

Chapter 6 Code Morphing Software: Examples ... 45

Chapter 7 Code Morphing Software: Checklist .. 47

Appendix A POST Codes ... 49

Appendix B Recommended Reading .. 51

 Glossary ... 53

 Index ... 63

TM8x00 Programming and Configuration Guide
September 10, 2003

4 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Directory of Contents

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 5

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Directory of Tables

Table 1: Header Fields ... 24
Table 2: OEM-Managed Fields... 26
Table 3: Transmeta SKU Fields.. 34
Table 4: OEM Configuration Table Initial State .. 43
Table 5: Efficeon TM8000 POST Codes in Receipt Order ... 49

TM8x00 Programming and Configuration Guide
September 10, 2003

6 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Directory of Tables

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 7

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Directory of Figures

Figure 1: Efficeon Package in a Bringup or Debugging Environment.. 12
Figure 2: Code Morphing Software Image as a Software Component 13

TM8x00 Programming and Configuration Guide
September 10, 2003

8 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Directory of Figures

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 9

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

C h a p t e r 1

Code Morphing
Software Overview

The following chapters provide information necessary to configure Code Morphing™ software (CMS), the
software portion of the Efficeon™ TM8x00 processor.

Reference Documents

The following documents should be used in conjunction with this guide:

• Efficeon™ Processor Data Book

• Efficeon™ Processor BIOS Programmer’s Guide

• Efficeon™ Processor Bringup and Configuration Tools

• Efficeon™ Processor System Design Guide (Preliminary)

• JEDEC Standard No. 21-C (11/25/97)

Changes from 7/10/03 Revision

• Updated entire document with Efficeon markings.

• Updated Chapter 2, Code Morphing Software Image.

• Added Chapter 3, Memory Configuration.

• Updated Chapter 4, OEM Configuration Table. Added documentation for the several fields.

• Added Chapter 5, Code Morphing Software: Initial State.

• Added Appendix A, POST Codes.

TM8x00 Programming and Configuration Guide
September 10, 2003

10 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Code Morphing Software Overview

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 11

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

C h a p t e r 2

Code Morphing
Software Image

This chapter describes the Code Morphing™ software image and how to create it. This chapter also provides
an overview of the process of bringing up an Efficeon processor in a development laboratory or pre-
production environment, and configuring it correctly for production.

The nature of an Efficeon processor is different from other products of its class in two significant ways:

• Parts of the processor itself are implemented in software. This enables many features not feasible in
hardware-only processors. For example, upgrades can be devised that involve a customer simply
executing a small, downloadable utility to flash a “processor upgrade” into ROM, with no swapping
motherboards or soldering required.

• The processor converts application code, in particular x86 code, into its own machine code on the fly.
This enables the processor to emulate other popular processors.

These innovations require different configuration techniques from other types of processors. There are
several steps required to bring up and configure a Transmeta Efficeon processor. In addition, there are
policies for memory layout, future processor upgrades, and other features that must be decided.

Code Morphing software provides many innovative services such as dramatically improved power
management and thermal management capabilities (LongRun™), a Virtual Northbridge (VNB) that eliminates
the need for a hardware northbridge, and a translation caching mechanism that enables the processor to
“learn” how users interact with their applications and increase actual working speed while running.

Since Code Morphing software loads and runs even before the BIOS, it must reside in a ROM where the
processor can find it and boot from it. Generally, you create a Code Morphing software image with a
Transmeta-supplied utility, then upload this image into the ROM using a ROM programmer or a Transmeta-
supplied device (see the book Efficeon™ Tools Guide). The new image is used to boot the system on reset.

2.1 Hardware Environment
In general, an Efficeon chip resides in a framework where it communicates with a southbridge via an HT bus,
a flash LPC ROM module via an LPC bus, a graphics module via an AGP bus, and a DDR RAM memory
module. Northbridge functions such as power and memory management are provided on the Cruose
package in a Virtual Northbridge (VNB)—no separate hardware northbridge is necessary. Code Morphing™

TM8x00 Programming and Configuration Guide
September 10, 2003

12 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Code Morphing Software Image

Software, which translates x86 instructions into VLIW instructions for the processor, resides with the BIOS in
a serial ROM accessed by LPC.

The following diagram shows the Efficeon package laid out with other necessary components, including the
Transmeta Debugging Module (TDM). (For more information on the TDM, see the Efficeon Tools Guide.)
Note that this diagram is for illustrative purposes only; for a detailed discussion of the hardware environment,
including true schematic diagrams, see the Efficeon TM8x00 System Design Guide.

Figure 1: Efficeon Package in a Bringup or Debugging Environment

Virtual Northbridge (VNB) System controller, implemented on the chip.

LPC ROM Provides storage for boot code, BIOS, and Code Morphing™ software.

AGP Controller AGP 4x graphics controller and SVGA adapter on desktop/server
configurations. On mobile configurations, video resides in the LPC ROM.

DDR Memory Modules The TM8x00 provides two double-data-rate (DDR) DIMM slots.

Southbridge Peripheral bus controller, accessed via HyperTransport (HT) bus.

Debug Module The TDM is a separate debugging module available from Transmeta. It
connects to an Efficeon chip via an XJTAG connection.

Efficeon™ package

Debug Module

VNB

TM8x00 DDR SDRAM

SODIMM
HT

AGP 4x

S-Video
Out

NTSC/PAL
Encoder

VGA
Out

USB

USB

USB

USB

Super IO /

Card Bus

Mini PCI
Card

1394
Controller

1394

PCMCIA
Type II/III

10/100
Ethernet

802.11
Antenna

NV Memory

PCI

Voltage
Regulators

AC’97
Codec

RJ-11
Modem

MicStereo
Out In

Wireless
802.11a/b
Bluetooth

Keyboard
Controller

LPC

DDR SDRAM

SODIMM

Power
Management

Controls

Stick

LPC

DDR

USB

USB

Southbridge

Graphics
Controller

connection to
development host

2MB Flash ROM
Code Morphing SW
System BIOS
Video BIOS (mobile only)
boot code

IDE

1394

USB 2.0

HDD
DVD/CD-ROM

XJTAG

via ethernet or
parallel port

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 13

PRELIMINARY INFORMATION
SUBJECT TO CHANGE Code Morphing Software Image

2.2 Software Environment
Unlike most other microprocessors, the Efficeon core also contains a robust software environment that
handles many tasks that are controlled by hardware on other platforms. The centerpiece of this design is
Code Morphing™ software (CMS), which provides a translation service from x86 code to Efficeon-native
VLIW code.

The following diagram shows the arrangement of the Code Morphing software image in the Efficeon package.

Figure 2: Code Morphing Software Image as a Software Component

Code Morphing Software
(CMS) image

CMS is a configurable, field-upgradable software component of the
processor. The primary task of CMS is to translate x86 instructions into
Efficeon-native VLIW instructions.

The CMS image contains two copies of itself in order to recover in case one
copy becomes corrupted during an interrupted upgrade.

OEM Configuration Table A field-upgradable1 configuration table which contains variables that can be
modified to suit your system’s needs. For more information, see Chapter 4,
OEM Configuration Table on page 23.

1. The OEM configuration table and boot code are field-upgradable, provided the LPC ROM in use has
its bottom 64kb split into independently-erasable 4kb sectors. For more information, see TBD.

boot code The CMS image contains the CPU's field-upgradable boot code. It is the first
software loaded when the system starts. It configures the memory ports and
selects and decompresses one of the two copies of CMS for execution.

BIOS A developed x86 BIOS, based on the needs of the system. Transmeta has
developed a reference BIOS, or you can develop your own BIOS. For more
information, see the BIOS Programmer’s Guide.

DDR Memory SPD Code Morphing software sizes and configures system memory using
information supplied in the memory SPD (Serial Presence Detect) chips.

x86
x86 operating system

x86 applications

Efficeon-based system

CMS Image

Efficeon™ package

VNB
TM8000 DDR SDRAM

SODIMM
HT

AGP 4x

S-Video
Out

NTSC/PAL
Encoder

VGA
Out

USB
USB

USB

USB

Super IO /

Card Bus

Mini PCI
Card

1394
Controller

1394

PCMCIA
Type II/III

10/100Ethernet

802.11
Antenna

NV Memory

PCI

Voltage
Regulators

AC’97
Codec

RJ-11
Modem

MicStereo
Out In

Wireless
802.11a/b
Bluetooth

Keyboard
Controller

LPC

DDR SDRAM

SODIMM

Power
Management

Controls

Stick

LPC

DDR

USB

USB

Southbridge

Graphics
Controller

2MB Flash ROM
Code Morphing SW
System BIOS
Video BIOS
boot code

IDE

1394

USB 2.0
HDD

DVD/CD-ROM

OEM

BIOS
configuration
table

boot code

DDR
Memory
SPDsee previous diagram

TM8x00 Programming and Configuration Guide
September 10, 2003

14 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Code Morphing Software Image

2.3 Configuration Overview

2.3.1 ROM Sections
A 2MB (16 Mbit) Code Morphing software ROM image consists of several logical components, described
below.

The non-BIOS components of CMS are readable through x86 space at these addresses if ROM windows in
the northbridge are programmed appropriately.

• Boot code. These are the first native (VLIW) instructions executed upon reset. It includes some power-
on self-test (POST) code and a decompressor, necessary because Code Morphing software is stored in
compressed form. Also contains memory configuration code.

• Code Morphing software. This software translates x86 instructions from the operating system,
applications, drivers, etc. into VLIW instructions for the processor, using configuration information found
in the OEM configruation table.

• OEM configuration table. This is a data structure programmed by the OEM/ODM to control several
aspects of the behavior of the CPU, the boot code, and Code Morphing software.

• Recovery boot code/OEM configuration table/Code Morphing software. Backup copies of each of
the main components of the image.

1KB = 1024 bytes, 1MB = 1024KB, and 1GB = 1024MB

address
4GB

(4GB - 2MB) + 1344KB

(4GB - 2MB) + 704KB

(4GB - 2MB) + 64KB

(4GB - 2MB) + 60KB

(4GB - 2MB) + 32KB

(4GB - 2MB) + 28KB

4GB - 2MB

ROM offset
2MB

1344KB

704KB

64KB

60KB

32KB

28KB

BIOS

Recovery Code

Primary Code

Recovery OEM table

Recovery boot code

Primary OEM table

Primary boot code
0

Morphing Software

Morphing Software

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 15

PRELIMINARY INFORMATION
SUBJECT TO CHANGE Code Morphing Software Image

2.3.2 Creating a CMS Image
A CMS image is created by first programming the OEM configuration table by editing the OEM configuration
template, and then compiling an image with the Transmeta-supplied utility makerom. The image is uploaded
to the LPC ROM using the utility flashtool, and the system is rebooted.

For information about makerom, flashtool, and other Transmeta utilities, see the Efficeon Tools Guide.

TM8x00 Programming and Configuration Guide
September 10, 2003

16 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Code Morphing Software Image

TM8000 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 17

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

C h a p t e r 3

Memory Configuration

There are several parameters in the OEM configuration table that affect memory configuration by the Code
Morphing software boot code. This chapter outlines memory configuration parameters from a hands-on
perspective.

Refer to Chapter 4, OEM Configuration Table on page 23 for more details on individual parameters.

3.1 DIMM Slots
The Efficeon memory controller supports up to 4 logical DIMMs. That is, although it supports 8 ranks of
memory, the ranks are collected into one-ranked or symmetric two-ranked DIMMs. That is, there is no way to
have 8 independent ranks. At most there are 4 DIMMs, each two-ranked, but the two ranks in each DIMM
have to be equal, i.e., same kinds of chips and organizations on both ranks of a DIMM.

This is independent of whether physical (So)DIMMs or soldered-down memory are used. In other words,
even if memory is soldered down, it must be described to the controller as a logical DIMM that may be one-
ranked or two-ranked, but if it is two-ranked, then the two ranks have to be identical.

Thus the memory configuration code is organized around the concept of DIMM slots, which are the logical
places where a DIMM is connected. Of course, for soldered-down memory there is no physical DIMM slot,
but there is still the concept, and this is how the memory is described to the software and the controller.

Note that although the controller supports up to 4 logical DIMMs, it can not support 4 physical DIMMs
because it does not have enough clock pairs for the general case. In specific configurations (registered
DIMMs only use one clock pair) and specific boards, it may support 4. Nothing above two is supported at this
time, but the controller and the software is forward-compatible in case a reference design without these
constraints is created at some point.

TM8000 Programming and Configuration Guide
September 10, 2003

18 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Memory Configuration

3.2 Required Memory Configuration
Following is the short list of parameters that OEMs are expected to set, all in the OEM-Managed section of
the configuration table:

• mem_probe_spd (also see mem_probe_spd on page 28)

• mem_sbus_spd_base_addr (also see mem_smbus_spd_base_addr on page 28)

• mem_slot_to_clocks[4] (also see mem_slot_to_clocks[4] on page 28)

• mem_spd[4] (also see mem_spd[4] on page 29)

mem_probe_spd
mem_probe_spd is a 4-bit bitmask that tells the boot code whether to read SPD data from the SPD ROM in a
DIMM, or from the OEM configuration table. There is one bit per logical DIMM slot (4 theoretically). Bit 0 of the
bitmask corresponds to slot 0, and so on.

A bit value of 0 means that the SPD data is to be found in the OEM config table, i.e. this 'DIMM slot' is a
soldered-down DIMM and we are using the OEM config table to contain the SPD data rather than soldering
down a separate SPD ROM.

A bit value of 1 means that the SPD data is to be found in the SPD ROM for this DIMM slot. In real terms, this
“DIMM slot” is a true DIMM slot that can have an arbitrary DIMM inserted into it, or otherwise looks enough
like a DIMM that it has a separate SPD ROM readable through the SMBUS.

Transmeta's current reference design boards have two DIMM slots (slots 0 and 1) and no soldered down
memory. Thus we use the default value 3 (binary 0011), to make the boot code read SPD data from the
SMBUS for slots 0 and 1, and from the OEM configuration table for slots 2 and 3 (but see
mem_slot_to_clocks below).

mem_sbus_spd_base_addr
mem_smbus_spd_base_addr is the SMBUS address of the SPD ROM for slot 0. The other SPD ROMs are
assumed to be at increasing SMBUS addresses from this one. Note that if slot 0 is soldered-down, but slot 1
really has a DIMM slot, this field still needs to contain the SMBUS address that slot 0 would have used, i.e. 1
less than the SMBUS address for slot 1.

For Transmeta's current reference design boards, the value is 0x50 (decimal 80) meaning that the SPD ROM
for DIMM slot 0 is at SMBUS address 0x50, the SPD ROM for DIMM slot 1 is at address 0x51, etc.

mem_slot_to_clocks[4]
mem_slot_to_clocks[4] is an array of 4 8-bit bitmasks. This array tells the boot code what clock pairs to
enable for each DIMM slot that is present.

If a slot has no clocks, then the boot code assumes that that slot is not present and does not try to configure
it. Similarly, if the boot code decides that there is no memory in some DIMM slot, it does not turn its clocks
on, to save a little power. On Transmeta's current reference design boards, the clocks are set to 0 for slots 2
and 3 in order to turn them off.

TM8000 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 19

PRELIMINARY INFORMATION
SUBJECT TO CHANGE Memory Configuration

Each clock pair is represented by a bit in an 8-bit bitmask. Clock pair 0 corresponds to bit 0 and clock pair 7
corresponds to bit 7.

DIMMs generally require 3 clock pairs each. A board designer can use any 3 of the 8 available clock pairs
and needs to inform the boot code of which pairs are used for which DIMM slot. On Transmeta's current
reference design boards, clock pairs 0-2 are used for slot 0, clock pairs 3-5 are used for slot 1, and clock pairs
6 and 7 are unused.

Thus, mem_slot_to_clocks[4] defaults to { 0x07, 0x38, 0, 0 } for Transmeta's current reference design boards.

If a designer solders down some memory, clock pair assignments may differ, and there mayb be fewer than 3
clock pairs for the soldered-down memory. For example, on a hypothetical board with a soldered-down DIMM
slot using clock pairs 0 and 1, and two DIMM slots using clock pairs 2-4 and 5-7 respectively, the board would
have mem_slot_to_clocks[4] set to { 0x3, 0x1c, 0xe, 0 }.

mem_spd[4]
mem_spd is an array of 4 SPD data structures. An element of mem_spd is only used when the corresponding
bit in mem_probe_spd is 0. This is where an OEM provides SPD data to the boot code for soldered-down
memory.

Note that Efficeon only uses the first 64 bytes of the SPD data, so mem_spd only has room for those 64
bytes, which include the checksum for those 64 bytes. If an OEM only has true DIMM slots, these fields need
not be programmed. This is the case for Transmeta's current reference design boards.

The recommendation for setting SPD data for soldered-down memory is to obtain a SoDIMM that has the
same chips and configuration as the soldered-down memory, read the first 64 bytes of the SPD data out of
the DIMM, and then program those bytes into the appropriate slot in the OEM config table. Otherwise,
Transmeta maintains a set of canonical SPD data files that can be used, but it is best to use the
manufacturer's data.

The default for this fields is all zeros since they are unused with Transmeta's current reference design boards.

3.3 Optional Memory Configuration
The default memory configuration parameters are designed to work for all OEMs. However, in case of
problems, this section describes parameters that can be adjusted, with Transmeta's help, to tune the boot
code to an OEM’s board. DO NOT change any of these parameters without help from Transmeta engineers.

• cpu_feature (also see cpu_feature on page 27)

• mem_freq_min (also see mem_freq_min on page 30)

• mem_freq_max (also see mem_freq_max on page 30)

• sclkdly_to_mem_frequency[4] (also see sclkdly_to_mem_frequency[4] on page 32)

• group_to_min_loads[4] and group_to_max_loads[4] (also see group_to_min_loads[4] on page 32 and
group_to_max_loads[4] on page 33)

TM8000 Programming and Configuration Guide
September 10, 2003

20 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Memory Configuration

cpu_feature
cpu_feature contains two bits that affect memory configuration that OEMs may want to use.

• Bit disable_ecc means that ECC should not be used even if all the DIMM slots support ECC. This is used
in Transmeta’s current reference design boards by default because of the performance problems
associated with using ECC. The default for OEM boards is disabled (1).

• Bit SSTL2_termination means that the board has SSTL_2 termination for the signals (command,
address, data, and strobes). This bit should not be necessary since the boot code should configure
memory automatically either way, but it may be necessary in some boards of hardware revision 1.1. We
recommend that customers not use SSTL_2 termination on rev. 1.1 hardware, so the default is off (0).

mem_freq_min
mem_freq_min specifies a frequency below which the boot code does not configure memory. The frequency
is specified in multiples of 16.67 MHz. and limits the command frequency of the DDR bus (e.g. 133 MHz for
DDR266 = PC2100, 200 MHz for DDR 400 = PC3200).

The boot code tries to configure memory at the highest rated speed (unless clamped by mem_freq_max or
some characterization fields). If configuration fails at that speed, the boot code decreases the speed of the
memory in 16.67 MHz or 33.33 MHz steps until it finds a working configuration. If at some point it tries to go
below mem_freq_min, it fails.

The default is 5, encoding 83.3 MHz, which is the minimum speed according to the JEDEC specs for
DDR200, DDR266, and DDR333. DDR400 may have a minimum speed of 100 MHz, which would be
encoded as 6.

mem_freq_max
mem_freq_max specifies the maximum frequency to use for memory even if the installed memory supports
higher frequencies. The frequency is specified in multiples of 16.67 MHz, and limits the command frequency
of the DDR bus.

This allows an OEM, for example, to qualify a board with DDR266, and force the boot code to use 133 MHz
frequency and not try higher speeds even if the memory supports it.

The default is 10, encoding 166.67 MHz (i.e. DDR333 = PC2700).

sclkdly_to_mem_frequency[4]
sclkdly_to_mem_frequency is an array of four values specifying a mapping between memory frequencies and
the internal sclkdly parameter.

sclkdly is a parameter used to compensate for board roundtrip time. A board with long DDR traces would
require larger sclkdly values than a board with short traces. The sclkdly value controls the phase difference
between the internal NB (Northbridge) clock and the external DRAM clock that the DRAM chips see. The
DRAM clock can lead the Northbridge clock by up to 3/8 of a cycle.

Loosely speaking, an sclkdly value of N means that the DRAM clock leads the NB clock by N/8 cycles. Thus
with a setting of 0, there is no phase difference between both clocks, while with a setting of 3, there is a 3/8
cycle difference between them. The larger the phase difference, the more round trip delay that can be

TM8000 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 21

PRELIMINARY INFORMATION
SUBJECT TO CHANGE Memory Configuration

accomodated. However, the phase difference can't be made too large because otherwise data may return
'too soon'. At higher frequencies, the same 1/8 fraction of a cycle becomes less absolute time, so even
though the board round-trip time may remain a constant, the fraction needs to be increased as well.

The encoding of sclkdly_to_mem_frequencies is such that each element of the array encodes the highest
memory command frequency value (in multiples of 16.67 MHz) that can use the value of the index of the
element. The default, which works well with Transmeta’s current reference design boards, is:

For boards with less round-trip time (e.g. with soldered-down memory close to the CPU), it is best to use 0 for
higher frequencies (e.g. DDR266 encoded as 8, or even DDR333 encoded as 10), and so on.

For boards with more round-trip time (e.g. 4 DIMM slots very far away), it would be best to use 0 for lower
frequencies (e.g. DDR200 encoded as 6, or even DDR167 encoded as 5), and so on.

group_to_min_loads[4] and group_to_max_loads[4]
group_to_min_loads and group_to_max_loads are best described together. Each is an array of four values
used to control the drive strength for the different signal groups in Efficeon processors.

Drive Strength Background

Drive strength must be reasonably well matched to the actual load, especially for boards lacking SSTL_2
termination. If the drive strength is too low, the signals rise and fall slowly and reduced frequency of operation
may result. If the drive strength is too high, ringing and coupling can occur, and this also reduces the
effective frequency of operation.

The Efficeon controller has programmable drive strength, where the configuration software (i.e. the boot
code) can enable more or fewer drivers for each of four signal groups. The drive strength for each signal
group is affected by the entries in these two arrays with the corresponding index.

• Group 0 is the clock signals (CLK, CLK#). The boot code assumes that there are always four effetive
loads for this signal group, as the JEDEC SoDIMM specs require the addition of capacitors to make all
clock pairs be similarly loaded.

• Group 1 is the per-rank commands signals (CS#, CKE). The boot code computes the loads per rank
given the configuration of the DIMMs and assumes that all chips present the same load, so it determines
drive strength given the rank with the largest number of loads (e.g. if one DIMM has 4 x16 parts and
another has 8 x8 parts, it assumes 8 chip loads).

• Group 2 is the shared command and address signals (RAS#, CAS#, WE#, BA<1:0>, and address).
These signals are typically the most loaded as they go to every DRAM chip in every DIMM and rank,
unless registered DIMMs are in use. The boot code sums the total number of DRAM chips given the
actual configuration, and considers that the logical chip load for this signal group.

• Group 3 is the strobe and data signals (DQS and DQ). Each of these signals is loaded once per rank of
memory, but each chip load is typically twice as large as the loads on the other signals.

Field Value Description
sclkdly_to_mem_frequency[0] 7 116.67 MHz is max frequency for sclkdly 0

sclkdly_to_mem_frequency[1] 10 166.67 MHz is max frequency for sclkdly 1

sclkdly_to_mem_frequency[2] 255 oo is max frequency for sclkdly 2

sclkdly_to_mem_frequency[3] 255 oo means that sclkdly 3 is unused

TM8000 Programming and Configuration Guide
September 10, 2003

22 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Memory Configuration

Specifying Drive Strength

In the controller, drive strength is specified, per signal group, as a value between 0 and 7, both inclusive.
Each of these values enables some progressive number of drivers for that signal group. The actual numbers
of drive transistors used are:

group_to_min_loads specifies, per signal group, the minimum logical chip loads that can be driven when the
strength parameter is set to 0. Similarly, group_to_max_loads specifies, per signal group, the maximum
logical chip loads that can be driven when the strength parameter is set to 7. The boot code linearly
interpolates between these sets of values, given the number of logical chip loads in each signal group.

Note that when lightly loaded (few logical chip loads), board capacitance may matter more than logical chip
loads, while when heavily loaded (large number of chip loads), the logical chip loads is the dominant effect.
Board capacitance partly determines drive strength. As different board layouts, routing, and materials can
affect drive strength, the parameters are tunable by OEMs, with Transmeta's help.

The defaults are all-zeros for min_loads, meaning that at their lowest setting we can drive no chip loads, and
{ 18, 18, 18, 9 } for max_loads, meaning that at the highest setting, we can drive 18 logical loads for most
signal groups, and only 9 logical loads for the DQ/DQS signal group. To allow for increased drive strength at
the low end, these arrays contain signed values, so negative values can be used causing the drive strength to
become higher.

Here are some examples of how the min, max, and logical chip loads results in a setting of drive strength:

Note that for group 2 (shared command and address signals), the controller uses 'double command mode'
when the number of logical chip loads exceeds the value in group_to_max_loads[2].

4, // for drive strength = 0
5,
6,
7,
8,
10,
12,
18, // for drive strength = 7

N loads
For min=4, max-18: For min = 0, max = 18:
N drivers Drive strength N drivers Drive strength

1 1 -> 4 0 5 1

2 2 -> 4 0 6 2

3 3 -> 4 0 7 3

4 4 0 8 4

5 5 1 8 4

6 6 2 9 -> 10 5

7 7 3 10 5

8 8 4 11 -> 12 6

9 9 -> 10 5 11 -> 12 6

10 10 5 12 6

11 11 6 -> 18 7

12 12 6

13+ ->18 7

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 23

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

C h a p t e r 4

OEM Configuration
Table

The OEM configuration table provides an interface for manufacturers to edit various Code Morphing™
software settings, notably LongRun voltage/frequency points but also VRDA information and (optionally)
memory settings to override SPD information. This table also provides boot code settings that were controlled
by a mode bit ROM in previous Transmeta processors.

Manufacturers create a configuration table using a SKU provided by Transmeta as well as the manufacturer’s
decisions about various aspects of processor configuration. The table is encoded using a utility called ROM
Compiler, and then uploaded with the BIOS to a ROM on the motherboard. Code Morphing software is the
first software to run on the processor—it sizes memory, sets voltage and frequency points, and configures the
processor prior to loading the BIOS and operating system.

OEM configuration table fields are categorized in this chapter as follows:

• OEM-Managed Fields on page 26

• Transmeta SKU Fields on page 34

• Read-Only Fields on page 24

Each section provides a summary of all fields described in that section. All sizes shown are in bytes.

Field Access

Each field in this configuration table is listed as one of the following:

RO Read-only. Do not change these fields.

RW Read-write. Change these fields to suit your application.

TO Transmeta-recommended values only. Contact your Transmeta representative to obtain the
proper settings for these fields.

Note
This configuration table is a work in progress, and many details are to be determined. This table described
here is not to be used with any Transmeta processor without assistance from a Transmeta representative.

TM8x00 Programming and Configuration Guide
September 10, 2003

24 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

4.1 Read-Only Fields
The fields described in this section are read-only parameters that define the size and scope of Code
Morphing software. They are administrative in nature and do not need to be changed by manufacturers.

header

String of characters demarcating the beginning of the OEM configuration table.

cpu_type

Processor type designation.

format_rev_major

Primary format revision.

Table 1: Header Fields

Field Name
Table
Offset

Width
(bytes) Access Default Value Page

header 0x0000 16 RO "OEM Config Table" 24

cpu_type 0x0010 1 RO 0x41 24

format_rev_major 0x0011 1 RO 0x04 24

table_size 0x0012 2 RO 0x0C7C 25

checksum 0x0014 4 RO checksum 25

format_rev_minor 0x0018 4 RO 0x00000001 25

upgrade_compatibility_version 0x001C 4 RO 0x00000000 25

timestamp 0x0020 4 RO 0x00000000 25

Field Name Table Offset Width (bytes) Access Default Value
header 0x0000 16 RO "OEM Config Table"

Field Name Table Offset Width (bytes) Access Default Value
cpu_type 0x0010 1 RO 0x41

Field Name Table Offset Width (bytes) Access Default Value
format_rev_major 0x0011 1 RO 0x04

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 25

PRELIMINARY INFORMATION
SUBJECT TO CHANGE OEM Configuration Table

table_size

Size of the defined part of the OEM configuration table.

checksum

Negated checksum of the entire table (total checksum = 0). This field should not be changed by hand.

format_rev_minor

Minor table revision number.

upgrade_compatibility_version

This bitfield identifies the potential compatibility of the running Code Morphing software version to possible
upgrades. Each bit corresponds to one compatibility issue, to be defined in a future revision.

timestamp

Timestamp generated by Transmeta.

Field Name Table Offset Width (bytes) Access Default Value
table_size 0x0012 2 RO 0x0C7C

Field Name Table Offset Width (bytes) Access Default Value
checksum 0x0014 4 RO checksum

Field Name Table Offset Width (bytes) Access Default Value
format_rev_minor 0x0018 4 RO 0x00000001

Field Name Table Offset Width (bytes) Access Default Value
upgrade_compatibility_version 0x001C 4 RO 0x00000000

Field Name Table Offset Width (bytes) Access Default Value
timestamp 0x0020 4 RO 0x00000000

TM8x00 Programming and Configuration Guide
September 10, 2003

26 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

4.2 OEM-Managed Fields
The fields in this section can be changed by manufacturers to suit specific applications. See the individual
fields for descriptions of their operation.

vr_100mV_ramp_time

Time in microseconds required to ramp voltage up or down by 100mV.

Table 2: OEM-Managed Fields

Field Name Table Offset Width (bytes) Access Default Value Pg
vr_100mV_ramp_time 0x0100 2 RW 0x0023 26

vr_voltage[32] 0x0104 2 (64 total) RW See description 27

cpu_feature 0x0144 4 RW 0x00000002 27

cms_memory_size 0x0148 1 RW 0x20 28

mem_probe_spd 0x0149 1 RW 0x03 28

mem_smbus_spd_base_addr 0x014a 1 RW 0x50 28

mem_slot_to_clocks[4] 0x014c 1 (4 total) RW See description 28

mem_spd[4] 0x0150 64 (256 total) RW All zeros 29

io_port_debug_led 0x0254 2 RW 0x0000 29

mem_freq_min 0x0256 1 RW 0x05 30

mem_freq_max 0x0257 1 RW 0x0A 30

rom_size_total 0x0258 2 RW 0x0020 30

rom_size_bios 0x025a 2 RW 0x000B 30

cms_main_start_block 0x025c 1 RW 0x01 30

cms_main_num_blocks 0x025d 1 RW 0x0A 31

cms_recovery_start_block 0x025e 1 RW 0x0B 31

cms_recovery_num_blocks 0x025f 1 RW 0x0A 31

upgrade_oem_id0 0x0260 4 TO Contact TMTA 31

upgrade_oem_id1 0x0264 4 RW 0x00000000 31

upgrade_options 0x0268 4 RW 0x00000000 32

upgrade_virtual_rom_model 0x026c 4 RW 0x00000101 32

sclkdly_to_mem_frequency[4] 0x0270 1 (4 total) RW See description 32

group_to_min_loads[4] 0x0274 1 (4 total) RW See description 32

group_to_max_loads[4] 0x0278 1 (4 total) RW See description 33

longrun_frequencies[8] 0x027C 2 (16 total) RW See description 33

Field Name Table Offset Width (bytes) Access Default Value
vr_100mV_ramp_time 0x0100 2 RW 0x0023

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 27

PRELIMINARY INFORMATION
SUBJECT TO CHANGE OEM Configuration Table

vr_voltage[32]

An array of 32 fields which stores the voltage (in millivolts) associated with the corresponding VRDA value.
The default values (in decimal) are as follows:

Also see longrun_frequencies[8] on page 33 and longrun_manifold[8] on page 39.

cpu_feature

CPU feature control bits.

Field Name Table Offset Width (bytes) Access Default Value
vr_voltage[32] 0x0104 2 (64 total) RW See description

Field Default Value Field Default Value
vr_voltage[0] 1750 vr_voltage[16] 975

vr_voltage[1] 1700 vr_voltage[17] 950

vr_voltage[2] 1650 vr_voltage[18] 925

vr_voltage[3] 1600 vr_voltage[19] 900

vr_voltage[4] 1550 vr_voltage[20] 875

vr_voltage[5] 1500 vr_voltage[21] 850

vr_voltage[6] 1450 vr_voltage[22] 825

vr_voltage[7] 1400 vr_voltage[23] 800

vr_voltage[8] 1350 vr_voltage[24] 775

vr_voltage[9] 1300 vr_voltage[25] 750

vr_voltage[10] 1024 vr_voltage[26] 725

vr_voltage[11] 1200 vr_voltage[27] 700

vr_voltage[12] 1150 vr_voltage[28] 675

vr_voltage[13] 1100 vr_voltage[29] 650

vr_voltage[14] 1050 vr_voltage[30] 625

vr_voltage[15] 1000 vr_voltage[31] 600

Field Name Table Offset Width (bytes) Access Default Value
cpu_feature 0x0144 4 RW 0x00000002

Bits Name Function Description Default
31:3 Reserved 0

2 SSTL2_termination SSTL2 Termination—If set, SSTL_2 termination is in use for the
DRAM bus.

0

1 disable_ecc Disable ECC—If set, treat ECC memory as non-ECC memory. 1

0 psn_disable PSN Disable—Permanently disable the processor serial number
(PSN). Default is 0 (enable PSN). This feature is normally
controlled via the Virtual Northbridge (VNB); for details see the
BIOS Programmer’s Guide.

0

TM8x00 Programming and Configuration Guide
September 10, 2003

28 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

cms_memory_size

Size of memory (in MB) reserved for CMS usage.

mem_probe_spd

Any bank that has mem_slot_to_clocks (see below) clear is ignored. Otherwise, for any bank which has a set
bit in this field, the memory configuration code attempts to probe for an SPD ROM.

When the appropriate bit is 1, if an SPD is found, it is used. Otherwise the slot is assumed to be empty. The
only way to use SPD data from the OEM config table is to have the relevant mem_probe_spd field set to 0.

mem_smbus_spd_base_addr

Address of first SPD ROM on the SMBUS.

mem_slot_to_clocks[4]

This table of 4 fields maps DDR DIMM slot numbers to the clocks needed for that DIMM.

Field Name Table Offset Width (bytes) Access Default Value
cms_memory_size 0x0148 1 RW 0x20

Field Name Table Offset Width (bytes) Access Default Value
mem_probe_spd 0x0149 1 RW 0x03

Field Name Table Offset Width (bytes) Access Default Value
mem_smbus_spd_base_addr 0x014a 1 RW 0x50

Field Name Table Offset Width (bytes) Access Default Value
mem_slot_to_clocks[4] 0x014c 1 (4 total) RW See description

Field Default Value
mem_slot_to_clocks[0] 0x07

mem_slot_to_clocks[1] 0x38

mem_slot_to_clocks[2] 0x00

mem_slot_to_clocks[3] 0x00

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 29

PRELIMINARY INFORMATION
SUBJECT TO CHANGE OEM Configuration Table

mem_spd[4]

An array of SPD data for each DDR DIMM (soldered down or override). One mem_spd field exists for each
DDR memory bank. SDR memory is not supported. Default values are zero for all sub-fields.

The structure for each field is shown below. SPD fields contained in each mem_spd field correspond directly
with those described in the SPD specification. See the specification for more information on individual fields.
Note that only the first 64 bytes of SPD data are used.

io_port_debug_led

I/O port address that forwards debug LED codes (0 to disable).

Field Name Table Offset Width (bytes) Access Default Value
mem_spd[4] 0x0150 64 (256 total) RW All zeros

Offset in
Structure

Size
(bytes) SPD Field

Offset in
Structure

Size
(bytes) SPD Field

0 0x0000 1 written_bytes 23 0x0017 1 tckmin1

1 0x0001 1 total_bytes 24 0x0018 1 tac1

2 0x0002 1 memory_type 25 0x0019 1 tckmin2

3 0x0003 1 row_addrs 26 0x001a 1 tac2

4 0x0004 1 col_addrs 27 0x001b 1 trp

5 0x0005 1 phys_banks 28 0x001c 1 trrd

6 0x0006 2 dwidth 29 0x001d 1 trcd

8 0x0008 1 vlvl 30 0x001e 1 tras

9 0x0009 1 tckmin 31 0x001f 1 density

10 0x000a 1 tac 32 0x0020 1 tas

11 0x000b 1 dimmconf 33 0x0021 1 tah

12 0x000c 1 ref 34 0x0022 1 tds

13 0x000d 1 width 35 0x0023 1 tdh

14 0x000e 1 eccwidth 36 0x0024 1 vcsdram[5]

15 0x000f 1 mindelay 41 0x0029 1 trc

16 0x0010 1 blength 42 0x002a 1 trfc

17 0x0011 1 nbanks 43 0x002b 1 tckmax

18 0x0012 1 cl 44 0x002c 1 tdqsqmax

19 0x0013 1 csl 45 0x002d 1 tqhs

20 0x0014 1 wl 46 0x002e 1 tpll

21 0x0015 1 modflags 62 0x003e 1 rev

22 0x0016 1 genflags 63 0x003f 1 checksum

Field Name Table Offset Width (bytes) Access Default Value
io_port_debug_led 0x0254 2 RW 0x0000

TM8x00 Programming and Configuration Guide
September 10, 2003

30 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

mem_freq_min

Lower limit of memory frequency in 100/6 MHz increments.

mem_freq_max

Upper limit of memory frequency in 100/6 MHz increments.

rom_size_total

Total size of ROM for partitioning (in units of 64K).

rom_size_bios

x86 BIOS size for partitioning (in units of 64K).

cms_main_start_block

This field encodes how Code Morphing software is stored in the ROM. It refers to the first contiguous 64K
block of Code Morphing software.

Field Name Table Offset Width (bytes) Access Default Value
mem_freq_min 0x0256 1 RW 5

Field Name Table Offset Width (bytes) Access Default Value
mem_freq_max 0x0257 1 RW 10

Field Name Table Offset Width (bytes) Access Default Value
rom_size_total 0x0258 2 RW 0x0020

Field Name Table Offset Width (bytes) Access Default Value
rom_size_bios 0x025a 2 RW 0x000B

Field Name Table Offset Width (bytes) Access Default Value
cms_main_start_block 0x025c 1 RW 0x01

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 31

PRELIMINARY INFORMATION
SUBJECT TO CHANGE OEM Configuration Table

cms_main_num_blocks

This field encodes how Code Morphing software is stored in the ROM. It refers to the total number of
contiguous 64K blocks of Code Morphing software.

cms_recovery_start_block

This field encodes how recovery Code Morphing software is stored in the ROM. It refers to the first
contiguous 64K block of recovery Code Morphing software.

cms_recovery_num_blocks

This encodes how recovery Code Morphing software is stored in the ROM. It refers to the total number of
contiguous 64K blocks of recovery Code Morphing software.

upgrade_oem_id0

A description of this field is reserved for a future edition of this document. Note that this field is NOT USABLE
as of this writing—OEMs must use a value provided by Transmeta.

upgrade_oem_id1

A description of this field is reserved for a future edition of this document

Field Name Table Offset Width (bytes) Access Default Value
cms_main_num_blocks 0x025d 1 RW 0x0A

Field Name Table Offset Width (bytes) Access Default Value
cms_recovery_start_block 0x025e 1 RW 0x0B

Field Name Table Offset Width (bytes) Access Default Value
cms_recovery_num_blocks 0x025f 1 RW 0x0A

Field Name Table Offset Width (bytes) Access Default Value
upgrade_oem_id0 0x0260 4 TO Contact TMTA

Field Name Table Offset Width (bytes) Access Default Value
upgrade_oem_id1 0x0264 4 RW 0x00000000

TM8x00 Programming and Configuration Guide
September 10, 2003

32 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

upgrade_options

A description of this field is reserved for a future edition of this document

upgrade_virtual_rom_model

Virtual ROM model description. A description of this field is reserved for a future edition of this document.

sclkdly_to_mem_frequency[4]

Table mapping sclkdly values to maximum memory frequencies (in increments of 16.67 MHz).

group_to_min_loads[4]

Table specifying how many chip loads in each signal group can be driven with drive strength set to 0 (min). It
depends strongly on board capacitance.

Field Name Table Offset Width (bytes) Access Default Value
upgrade_options 0x0268 4 RW 0x00000000

Field Name Table Offset Width (bytes) Access Default Value
upgrade_virtual_rom_model 0x026c 4 RW 0x00000101

Field Name Table Offset Width (bytes) Access Default Value
sclkdly_to_mem_frequency[4] 0x0270 1 (4 total) RW See description

Field Default Value
sclkdly_to_mem_frequency[0] 7

sclkdly_to_mem_frequency[1] 10

sclkdly_to_mem_frequency[2] 255

sclkdly_to_mem_frequency[3] 255

Field Name Table Offset Width (bytes) Access Default Value
group_to_min_loads[4] 0x0274 1 (4 total) RW See description

Field Default Value Field Default Value
group_to_min_loads[0] 0 group_to_min_loads[2] 0

group_to_min_loads[1] 0 group_to_min_loads[3] -1

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 33

PRELIMINARY INFORMATION
SUBJECT TO CHANGE OEM Configuration Table

group_to_max_loads[4]

Table specifying how many chip loads in each signal group can be driven with drive strength set to 7 (max). It
depends weakly on board capacitance.

longrun_frequencies[8]

Table specifying LongRun™ frequencies. Each entry is a frequency in MHz, or 0 for an 'empty' entry. The
non-empty entries must be contiguous at the start of the array. There is space for 8 entries in the array.
Empty entries are ignored. Frequencies must be in ascending order.

To set a LongRun point, place a frequency entry in this table. Corresponding voltages are computed by Code
Morphing software. Pre-set defaults are shown below.

Also see vr_voltage[32] on page 27, longrun_manifold[8] on page 39, and longrun_min_frequency on
page 40. To set this field, contact your Transmeta representative.

Field Name Table Offset Width (bytes) Access Default Value
group_to_max_loads[4] 0x0278 1 (4 total) RW See description

Field Default Value
group_to_max_loads[0] 18

group_to_max_loads[1] 18

group_to_max_loads[2] 18

group_to_max_loads[3] 9

Field Name Table Offset Width (bytes) Access Default Value
longrun_frequencies[8] 0x027C 2 (16 total) RW See description

Field Default Value Field Default Value
longrun_frequencies[0] 400 longrun_frequencies[4] 0

longrun_frequencies[1] 533 longrun_frequencies[5] 0

longrun_frequencies[2] 667 longrun_frequencies[6] 0

longrun_frequencies[3] 800 longrun_frequencies[7] 0

TM8x00 Programming and Configuration Guide
September 10, 2003

34 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

4.3 Transmeta SKU Fields
The fields summarized in the following table comprise a Transmeta SKU, which is a single tested package
configuration that controls several aspects of Code Morphing software. Contact your Transmeta
representative to obtain the proper settings for these fields.

Table 3: Transmeta SKU Fields

Field Name Table Offset Width (bytes) Access Default Value Page
sku_flags 0x0800 4 TO 0x00000000 35

bpctrl 0x0804 4 TO 0x00000019 35

ifctrl 0x0808 4 TO 0x00000002 35

mode_da_low_v_range 0x080C 4 TO 0x04420F23 35

mode_da_high_v_range 0x0810 4 TO 0x04420F23 35

mode_da_low_v_range_max_v 0x0814 2 TO 1100 36

mode_da_high_v_range_min_v 0x0816 2 TO 900 36

sc_laconfig 0x0818 2 TO 0x0aa3 36

sc_ltconfig 0x081A 2 TO 0x00a3 36

mode_tlb 0x081C 1 TO 0x02 36

mode_wq 0x081D 1 TO 0x02 36

pm_tag_mode 0x081E 1 TO 0x05 37

pm_data_mode 0x081F 1 TO 0x05 37

mc_pll_mode 0x0820 2 TO 0x6400 37

mc_core_clkdiv 0x0822 2 TO 0x0090 37

mc_misc_mode 0x0824 2 TO 0x6985 37

mc_elroy_clkdiv 0x0826 2 TO 0x0604 37

longrun_pll_relock 0x0828 1 TO 0x14 38

core_voltage 0x0829 1 TO 0x0E 38

rd_dqsdly_temp_adjust 0x082A 1 TO 0x52 38

wr_dqdly_temp_adjust 0x082B 1 TO 0x00 38

longrun_manifold[8] 0x082C 6 (48 total) TO See description 39

longrun_min_frequency 0x085C 2 TO 0x012c 40

cspec_lim 0x085E 1 TO 0x1b 40

vc_full 0x085F 1 TO 0x1e 40

vc_priority 0x0860 1 TO 0x15 40

vc_threshold 0x0861 1 TO 0x0e 40

dc_enable 0x0862 1 TO 0x03 41

it_ena 0x0863 1 TO 0x07 41

pcctl 0x0864 2 TO 0x03ef 41

sc_cs 0x0866 2 TO 0x02ff 41

ap_esr_io_dly_ctl 0x0868 4 TO 0x1c30300 41

volt_max 0x086C 2 TO 1500 42

volt_min 0x086E 2 TO 750 42

volt_cons_mult 0x0870 1 TO 0 42

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 35

PRELIMINARY INFORMATION
SUBJECT TO CHANGE OEM Configuration Table

sku_flags

Flags to set SKU-specific features, as described below. Please set this field to a value designated by
Transmeta.

bpctrl

Transmeta defined field. Please set this field to a value designated by Transmeta.

ifctrl

Transmeta defined field. Please set this field to a value designated by Transmeta.

mode_da_low_v_range

Transmeta defined field. Please set this field to a value designated by Transmeta.

mode_da_high_v_range

Transmeta defined field. Please set this field to a value designated by Transmeta.

Field Name Table Offset Width (bytes) Access Default Value
sku_flags 0x0800 4 TO 0x00000000

Bits Name Description Default
31:3 Reserved 0

2 enable_AGP_fast_write Enable AGP fast writes 1

1. Note that BIOS can still disable this feature.

0

1 enable_AGP_4x Enable AGP 4x 1 0

0 enable_elroy_pll_divby Allow Northbridge to work at odd multiples of 16.67 MHz 0

Field Name Table Offset Width (bytes) Access Default Value
bpctrl 0x0804 4 TO 0x00000019

Field Name Table Offset Width (bytes) Access Default Value
ifctrl 0x0808 4 TO 0x00000002

Field Name Table Offset Width (bytes) Access Default Value
mode_da_low_v_range 0x080C 4 TO 0x04420F23

Field Name Table Offset Width (bytes) Access Default Value
mode_da_high_v_range 0x0810 4 TO 0x04420F23

TM8x00 Programming and Configuration Guide
September 10, 2003

36 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

mode_da_low_v_range_max_v

Transmeta defined field. Please set this field to a value designated by Transmeta.

mode_da_high_v_range_min_v

Transmeta defined field. Please set this field to a value designated by Transmeta.

sc_laconfig

Transmeta defined field. Please set this field to a value designated by Transmeta.

sc_ltconfig

Transmeta defined field. Please set this field to a value designated by Transmeta.

mode_tlb

Transmeta defined field. Please set this field to a value designated by Transmeta.

mode_wq

Transmeta defined field. Please set this field to a value designated by Transmeta.

Field Name Table Offset Width (bytes) Access Default Value
mode_da_low_v_range_max_v 0x0814 2 TO 1100

Field Name Table Offset Width (bytes) Access Default Value
mode_da_high_v_range_min_v 0x0816 2 TO 900

Field Name Table Offset Width (bytes) Access Default Value
sc_laconfig 0x0818 2 TO 0x0aa3

Field Name Table Offset Width (bytes) Access Default Value
sc_ltconfig 0x081A 2 TO 0x00a3

Field Name Table Offset Width (bytes) Access Default Value
mode_tlb 0x081C 1 TO 0x02

Field Name Table Offset Width (bytes) Access Default Value
mode_wq 0x081D 1 TO 0x02

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 37

PRELIMINARY INFORMATION
SUBJECT TO CHANGE OEM Configuration Table

pm_tag_mode

Transmeta defined field. Please set this field to a value designated by Transmeta.

pm_data_mode

Transmeta defined field. Please set this field to a value designated by Transmeta.

mc_pll_mode

Transmeta defined field. Please set this field to a value designated by Transmeta.

mc_core_clkdiv

Transmeta defined field. Please set this field to a value designated by Transmeta.

mc_misc_mode

Transmeta defined field. Please set this field to a value designated by Transmeta.

mc_elroy_clkdiv

Transmeta defined field. Please set this field to a value designated by Transmeta.

Field Name Table Offset Width (bytes) Access Default Value
pm_tag_mode 0x081E 1 TO 0x05

Field Name Table Offset Width (bytes) Access Default Value
pm_data_mode 0x081F 1 TO 0x05

Field Name Table Offset Width (bytes) Access Default Value
mc_pll_mode 0x0820 2 TO 0x6400

Field Name Table Offset Width (bytes) Access Default Value
mc_core_clkdiv 0x0822 2 TO 0x0090

Field Name Table Offset Width (bytes) Access Default Value
mc_misc_mode 0x0824 2 TO 0x6985

Field Name Table Offset Width (bytes) Access Default Value
mc_elroy_clkdiv 0x0826 2 TO 0x0604

TM8x00 Programming and Configuration Guide
September 10, 2003

38 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

longrun_pll_relock

Value (in tenths of a microsecond) required for PLL relock during LongRun frequency change. Please set this
field to a value designated by Transmeta.

core_voltage

Force core voltage used by boot code after reset, shown as VRDA code rather than a hardcoded mV value
(see vr_voltage[32] on page 27). Must be no higher than 50 mV higher than the lowest LongRun voltage, and
must support 533 MHz core operation and 167 MHz Northbridge operation. Please set this field to a value
designated by Transmeta.

rd_dqsdly_temp_adjust

Number of taps lost/gained per 50°C increment at Vmin. Two nibbles, the high nibble is taps lost at the high
end, the low nibble is taps gained at the low end. Please set this field to a value designated by Transmeta.

wr_dqdly_temp_adjust

Number of taps lost/gained per 50°C increment at Vmin. Two nibbles, the high nibble is taps lost at the high
end, the low nibble is taps gained at the low end. Please set this field to a value designated by Transmeta.

Field Name Table Offset Width (bytes) Access Default Value
longrun_pll_relock 0x0828 1 TO 0x14

Field Name Table Offset Width (bytes) Access Default Value
core_voltage 0x0829 1 TO 0x0E

Field Name Table Offset Width (bytes) Access Default Value
rd_dqsdly_temp_adjust 0x082A 1 TO 0x52

Field Name Table Offset Width (bytes) Access Default Value
wr_dqdly_temp_adjust 0x082B 1 TO 0x00

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 39

PRELIMINARY INFORMATION
SUBJECT TO CHANGE OEM Configuration Table

longrun_manifold[8]

This array of 8 fields contains a SKU which describes all supported LongRun voltage and frequency points.
Not all 8 points are required; zeroes can be filled for unused points. The structure for each field is as follows:

It is important that non-empty entries have zero as their voltage (meaning that Code Morphing software
computes the voltage), or all of them have non-zero values. All non-empty entries must be contiguous at the
start of the array. There is space for 8 entries in the array.

There must be at least 3 non-empty entries in the longrun manifold for any system implementing LongRun
Advanced Thermal Management:

• A top MHz entry at 80 (or 70) degrees C.

• Two different entries at 100 degrees C, one with high MHz (but presumably lower than the 80 degree
entry), and one with low MHz, at or above 533 MHz.

For systems not implementing LongRun Advanced Thermal Management, at least two non-empty entries are
necessary, namely the two entries at 100 degrees C described above. For more information about LongRun
Advanced Thermal Management, see the documentation for the LR_ATM register in the Transmeta Virtual
Northbridge (VNB) in the Efficeon TM8x00 BIOS Programmer’s Guide.

NOTE: To fix the frequency of operation, use the longrun_frequencies[8] table on page 33, not the manifold.

Default values for this field are as follows.

Also see vr_voltage[32] on page 27 and longrun_frequencies[8] on page 33.

Note that LongRun will not set a frequency lower than the value shown in longrun_min_frequency, below, nor
will it set voltages out of the range shown in volt_max on page 42, volt_min on page 42, and volt_cons_mult
on page 42.

Please set this field to a value designated by Transmeta.

Field Name Table Offset Width (bytes) Access Default Value
longrun_manifold[8] 0x082C 6 (48 total) TO See description

Offset in Structure Width (bytes) Value Units Function Description
0x0000 2 frequency MHz Frequency for this LongRun point

0x0002 2 voltage mV Voltage for this LongRun point

0x0004 2 temp °C Allowable temperature for this point

Field (frequency) Default Field (voltage) Default Field (temp) Default
longrun_point[0].frequency 400 longrun_point[0].voltage 1000 longrun_point[0].temp 100

longrun_point[1].frequency 533 longrun_point[1].voltage 1100 longrun_point[1].temp 100

longrun_point[2].frequency 667 longrun_point[2].voltage 1200 longrun_point[2].temp 100

longrun_point[3].frequency 800 longrun_point[3].voltage 1250 longrun_point[3].temp 80

longrun_point[4].frequency 0 longrun_point[4].voltage 0 longrun_point[4].temp 0

longrun_point[5].frequency 0 longrun_point[5].voltage 0 longrun_point[5].temp 0

longrun_point[6].frequency 0 longrun_point[6].voltage 0 longrun_point[6].temp 0

longrun_point[7].frequency 0 longrun_point[7].voltage 0 longrun_point[7].temp 0

TM8x00 Programming and Configuration Guide
September 10, 2003

40 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

longrun_min_frequency

Minimum LongRun frequency, in MHz. Also see volt_max on page 42, volt_min on page 42, and
volt_cons_mult on page 42, as well as longrun_manifold[8] above.

Please set this field to a value designated by Transmeta.

cspec_lim

Cached speculation limit modebits register. Please set this field to a value designated by Transmeta.

vc_full

Victim Cache Full indicator threshold modebits register. Please set this field to a value designated by
Transmeta.

vc_priority

Victim Cache drain Priority threshold modebits register. Please set this field to a value designated by
Transmeta.

vc_threshold

Victim Cache drain Theshold modebits register. Please set this field to a value designated by Transmeta.

Field Name Table Offset Width (bytes) Access Default Value
longrun_min_frequency 0x085C 2 TO 300

Field Name Table Offset Width (bytes) Access Default Value
cspec_lim 0x085E 1 TO 0x1b

Field Name Table Offset Width (bytes) Access Default Value
vc_full 0x085F 1 TO 0x1e

Field Name Table Offset Width (bytes) Access Default Value
vc_priority 0x0860 1 TO 0x15

Field Name Table Offset Width (bytes) Access Default Value
vc_threshold 0x0861 1 TO 0x0e

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 41

PRELIMINARY INFORMATION
SUBJECT TO CHANGE OEM Configuration Table

dc_enable

Data Cache Enable modebits register. Please set this field to a value designated by Transmeta.

it_ena

I/O Transfer Enable modebits register. Please set this field to a value designated by Transmeta.

pcctl

PC-unit control modebits register. Please set this field to a value designated by Transmeta.

sc_cs

Secondary Cache Control modebits register. Please set this field to a value designated by Transmeta.

ap_esr_io_dly_ctl

AGP I/O buffer circuitry delay values. Please set this field to a value designated by Transmeta.

Field Name Table Offset Width (bytes) Access Default Value
dc_enable 0x0862 1 TO 0x03

Field Name Table Offset Width (bytes) Access Default Value
it_ena 0x0863 1 TO 0x07

Field Name Table Offset Width (bytes) Access Default Value
pcctl 0x0864 2 TO 0x03ef

Field Name Table Offset Width (bytes) Access Default Value
sc_cs 0x0866 2 TO 0x02ff

Field Name Table Offset Width (bytes) Access Default Value
ap_esr_io_dly_ctl 0x0868 4 TO 0x1c30300

TM8x00 Programming and Configuration Guide
September 10, 2003

42 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

OEM Configuration Table

volt_max

Maximum LongRun voltage, in mV. Also see longrun_min_frequency on page 40, volt_min on page 42, and
volt_cons_mult on page 42, as well as longrun_manifold[8] on page 39. Please set this field to a value
designated by Transmeta.

volt_min

Minimum LongRun voltage, in mV. Also see longrun_min_frequency on page 40, volt_min on page 42, and
volt_cons_mult on page 42, as well as longrun_manifold[8] on page 39. Please set this field to a value
designated by Transmeta.

volt_cons_mult

A scaling factor in mV, part of the computation to calculate voltage for a given LongRun point. Please set this
field to a value designated by Transmeta.

Field Name Table Offset Width (bytes) Access Default Value
volt_max 0x086C 2 TO 1500

Field Name Table Offset Width (bytes) Access Default Value
volt_min 0x086E 2 TO 750

Field Name Table Offset Width (bytes) Access Default Value
volt_cons_mult 0x0870 1 TO 0

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 43

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

C h a p t e r 5

Code Morphing
Software: Initial State

Table 4: OEM Configuration Table Initial State

Field Type Field Name Offset Default Value Pg
readonly header 0x0000 "OEM Config Table" 18

readonly cpu_type 0x0010 0x41 18

readonly format_rev_major 0x0011 0x04 18

readonly table_size 0x0012 0x0C7C 19

readonly checksum 0x0014 0x0827b9c4 19

readonly format_rev_minor 0x0018 0x00000001 19

readonly upgrade_compatibility_version 0x001C 0x00000000 19

readonly timestamp 0x0020 0x00000000 19

OEM vr_100mV_ramp_time 0x0100 0x0023 20

OEM vr_voltage[32] 0x0104 See description 21

OEM cpu_feature 0x0144 0x00000002 21

OEM cms_memory_size 0x0148 0x20 22

OEM mem_probe_spd 0x0149 0x03 22

OEM mem_smbus_spd_base_addr 0x014a 0x50 22

OEM mem_slot_to_clocks[4] 0x014c See description 22

OEM mem_spd[4] 0x0150 All zeros 23

OEM io_port_debug_led 0x0254 0x0000 23

OEM mem_freq_min 0x0256 0x05 24

OEM mem_freq_max 0x0257 0x0A 24

OEM rom_size_total 0x0258 0x0020 24

OEM rom_size_bios 0x025a 0x000B 24

OEM cms_main_start_block 0x025c 0x01 24

OEM cms_main_num_blocks 0x025d 0x0A 25

OEM cms_recovery_start_block 0x025e 0x0B 25

OEM cms_recovery_num_blocks 0x025f 0x0A 25

OEM upgrade_oem_id0 0x0260 0x00000000 25

OEM upgrade_oem_id1 0x0264 0x00000000 25

TM8x00 Programming and Configuration Guide
September 10, 2003

44 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Code Morphing Software: Initial State

OEM upgrade_options 0x0268 0x00000000 26

OEM upgrade_virtual_rom_model 0x026c 0x00000101 26

OEM sclkdly_to_mem_frequency[4] 0x0270 See description 26

OEM group_to_min_loads[4] 0x0274 See description 27

OEM group_to_max_loads[4] 0x0278 See description 27

OEM longrun_frequencies[8] 0x027C See description 27

SKU sku_flags 0x0800 0x00000000 29

SKU bpctrl 0x0804 0x00000019 29

SKU ifctrl 0x0808 0x00000002 29

SKU mode_da_low_v_range 0x080C 29

SKU mode_da_high_v_range 0x0810 29

SKU mode_da_low_v_range_max_v 0x0814 1100 30

SKU mode_da_high_v_range_min_v 0x0816 900 30

SKU sc_laconfig 0x0818 0x0aa3 30

SKU sc_ltconfig 0x081A 0x00a3 30

SKU mode_tlb 0x081C 0x02 30

SKU mode_wq 0x081D 0x02 30

SKU pm_tag_mode 0x081E 0x05 31

SKU pm_data_mode 0x081F 0x05 31

SKU mc_pll_mode 0x0820 0x6400 31

SKU mc_core_clkdiv 0x0822 0x0090 31

SKU mc_misc_mode 0x0824 0x6985 31

SKU mc_elroy_clkdiv 0x0826 0x0604 31

SKU longrun_pll_relock 0x0828 0x14 32

SKU core_voltage 0x0829 0x0E 32

SKU rd_dqsdly_temp_adjust 0x082A 0x52 32

SKU wr_dqdly_temp_adjust 0x082B 0x00 32

SKU longrun_manifold[8] 0x082C See description 32

SKU longrun_min_frequency 0x085C 0x012c 33

SKU cspec_lim 0x085E 0x1b 33

SKU vc_full 0x085F 0x1e 33

SKU vc_priority 0x0860 0x15 33

SKU vc_threshold 0x0861 0x0e 34

SKU dc_enable 0x0862 0x03 34

SKU it_ena 0x0863 0x07 34

SKU pcctl 0x0864 0x03ef 34

SKU sc_cs 0x0866 0x02ff 34

SKU ap_esr_io_dly_ctl 0x0868 0x1c30300 34

SKU volt_max 0x086C 1500 35

SKU volt_min 0x086E 750 35

SKU volt_cons_mult 0x0870 0 35

Table 4: OEM Configuration Table Initial State (Continued)

Field Type Field Name Offset Default Value Pg

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 45

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

C h a p t e r 6

Code Morphing
Software: Examples

TBD

TM8x00 Programming and Configuration Guide
September 10, 2003

46 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Code Morphing Software: Examples

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 47

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

C h a p t e r 7

Code Morphing
Software: Checklist

TBD

TM8x00 Programming and Configuration Guide
September 10, 2003

48 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Code Morphing Software: Checklist

Efficeon™ Development Tools
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 49

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

A p p e n d i x A

POST Codes

This section describes the Code Morphing software POST and error codes for Transmeta Efficeon™ TM8x00
processors.

A POST code is a “progress marker”, and if displayed indicates the executed code stream has successfully
moved past that point. Code Morphing software boot code typically issues a POST code prior to some new
functional section of code being executed, and if the next POST code never appears, the last POST code
issued indicates the last known working section of code executed before a problem arose.

An error code is a status descriptor giving some information about a problem encountered. Code Morphing
software typically issues an error code after doing something and finding a problem with it.

POST and error codes are two bytes in length. xx in the second byte position indicates a variable value, that
for most codes is 00. The table below lists the Efficeon TM8x00 Code Morphing software (CMS) POST and
error codes.

Table 5: Efficeon TM8000 POST Codes in Receipt Order

Code Description
04 00 Hello world, posts within 10 instructions of boot

58 20 Checksums match, caches initialized, late boot code decompressed and running—before memory
configuration

9x xx Error computing chip capacity, where xxx = calculated size

a0 xx Error in configuring and sizing memory (xx = nonzero)

68 02 Finished reading SPD data

69 xx Memory configured, xx = result (00 = success)

6a xx Memory verified, xx = memory verification return val (00 = success)

68 03 Finished configuring memory (Note, sometimes this code doesn't show up because it is emitted in
quick succession with 5830, too fast for the debugger to recognize)

58 30 Memory successfully configured

58 65 (if xboot present) before xboot init

58 80 Before CMS decompression

58 90 Main CMS successfully decompressed

58 91 Main CMS decompression failed, decompressed recovery CMS

AC ED CMS decompressed, instructions begin

AC 04 Begin CMS nucleus initialization for regular cold boot

Property of:

Transmeta Corporation
3940 Freedom Circle
Santa Clara, CA 95054
USA
(408) 919-3000
http://www.transmeta.com

The information contained in this document is provided solely for use in connection with Transmeta products, and Transmeta
reserves all rights in and to such information and the products discussed herein. This document should not be construed as
transferring or granting a license to any intellectual property rights, whether express, implied, arising through estoppel or
otherwise. Except as may be agreed in writing by Transmeta, all Transmeta products are provided “as is” and without a
warranty of any kind, and Transmeta hereby disclaims all warranties, express or implied, relating to Transmeta’s products,
including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose and non-infringement of
third party intellectual property. Transmeta products may contain design defects or errors which may cause the products to
deviate from published specifications, and Transmeta documents may contain inaccurate information. Transmeta makes no
representations or warranties with respect to the accuracy or completeness of the information contained in this document, and
Transmeta reserves the right to change product descriptions and product specifications at any time, without notice.

Transmeta products have not been designed, tested, or manufactured for use in any application where failure, malfunction, or
inaccuracy carries a risk of death, bodily injury, or damage to tangible property, including, but not limited to, use in factory
control systems, medical devices or facilities, nuclear facilities, aircraft, watercraft or automobile navigation or communication,
emergency systems, or other applications with a similar degree of potential hazard.

Transmeta reserves the right to discontinue any product or product document at any time without notice, or to change any
feature or function of any Transmeta product or product document at any time without notice.

Trademarks: Transmeta, the Transmeta logo, Crusoe, the Crusoe logo, Code Morphing, LongRun, and combinations thereof
are trademarks of Transmeta Corporation in the USA and other countries. Other product names and brands used in this
document are for identification purposes only, and are the property of their respective owners.

Copyright © 2003 Transmeta Corporation. All rights reserved.

Efficeon™ Development Tools
September 10, 2003

50 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

Copyright PRELIMINARY INFORMATION
SUBJECT TO CHANGE

AC 06 Begin CMS nucleus initialization for resume path

AC 14 CMS component initialization complete for cold boot

AC 16 CMS component initialization complete for resume path

AC 18 CMS x86 install state complete

AC 1C CMS about to execute first x86 instruction

Table 5: Efficeon TM8000 POST Codes in Receipt Order (Continued)

Code Description

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 51

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

A p p e n d i x B

Recommended
Reading

The following documents should be used in conjunction with this guide. Due to the preliminary nature of this
document, not all reference documents may be available.

• Efficeon™ Data Book

• Efficeon™ Code Morphing Software Guide

• Efficeon™ BIOS Programmer’s Guide

• Efficeon™ Functional and Specification Errata

• Efficeon™ System Design Guide

• Efficeon TM8x00 Code Morphing Software Release Notes

TM8x00 Programming and Configuration Guide
September 10, 2003

52 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Appendices
Recommended Reading

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 53

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Glossary

A ABI—Application Binary Interface. The detailed low-level conventions that applications use to communicate
with an operating system or a language/environment library. An ABI is the low-level realization of an API. It
consists of the register conventions, parameter passing and return conventions, invocation of the O/S
conventions (e.g. through an exception, etc.), etc.

ACPI—Advanced Configuration and Power Interface. An operating-system-centric power management
scheme based on a description of a set of hardware interfaces that the operating system can use to both
change the active and suspend power states of the CPU and to determine the relative advantages and
implement an appropriate policy. BIOS sets up the ACPI tables, and the OS uses the tables to enter and exit
states and decide when it is profitable to do it.

AGP—Advanced Graphics Port. An interface added to modern northbridge chips used by graphics
accelerators. It is similar to the PCI bus, but wider and running at a faster frequency. It is logically a PCI bus
on its own right, but running at a higher frequency.

API—Application Programming Interface. The high-level (often C-language) interface that applications use to
communicate with an operating system or a language/environment library. By extension, the high-level
interface presented by any subsystem (e.g. a telephony API).

APIC—Advanced Programmable Interrupt Controller. An extension to the x86 architecture which allows finer
granularity of control over interrupts and more interrupt sources without sharing an IRQ. The APIC
architecture is composed of two components, the local APIC in each CPU, and the I/O APICs in the
southbridge and elsewhere. The APICs communicate either by a dedicated protocol (dedicated bus in the P6
class of Intel CPUs) to arbitrate interrupt delivery.

atom—An individually-encoded operation in a VLIW instruction. A VLIW instruction, also called a molecule,
consists of a collection of operations called atoms. Atoms are similar to the instructions in RISC architectures.

B BIOS—Basic Input Output System. A collection of software utilities that virtualizes some of the platform for
the benefit of the operating system. Typically it gains control after reset (power up), and after configuring
some platform-specific hardware, loads the operating system into memory and transfer control to it. It remains
resident as a set of subroutines to virtualize the keyboard, the mouse, the screen, the disk, etc. Modern
operating systems bypass the BIOS for most services, and the BIOS has become almost exclusively a boot
loader.

bridge—A device connected to two or more buses that forwards requests or transactions from one to
another. The northbridge, among oth er things, is a bridge logically connecting the processor local (or front-
side) bus to the PCI (and AGP) bus. Some southbridges, among other things, are bridges connecting the PCI
bus to an ISA bus.

TM8x00 Programming and Configuration Guide
September 10, 2003

54 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Glossary

C CMS—Code-Morphing™ Software. A dynamic translator and interpreter system that emulates some well-
established architecture (e.g. x86) on top of Transmeta's unique VLIW hardware.

CPU—Central Processing Unit. The processor in a computer system. It executes the SW instructions which
advance state and may in turn access peripheral devices. Generally excludes memory and I/O devices,
unless embedded in the CPU.

CPX—Cycles Per X-tick. A measure of x86 machine efficiency/performance. At the same frequency and
running the same application or benchmark, a lower CPX generally indicates better performance.

D DDR—Double Data Rate. A bus protocol technique in which data is transferred on both rising and falling
edges of the bus clock, effectively achieving twice the data throughput. It is the counterpart to SDR on which
data is transferred only on rising or falling edges of the clock. Examples of DDR interfaces are the TM8000 MI
(memory interface) unit, and the HyperTransport link from the TM8000 Virtual Northbridge to the southbridge.

DIMM—Dual In-line Memory Module. A memory (DRAM) module with a particular organization.

DMA—Direct Memory Access. Traditionally, the ability of devices on a bus to access main memory without
the processor's intervention—a form of doing I/O where the CPU is not directly involved in the transfers,
unlike programmed I/O (PIO). In modern computer systems the DMA facility is implemented in the memory
controller, called the northbridge in PC terminology. In Transmeta products, the processor is involved to
maintain T-cache coherence.

DRAM—Dynamic Random Access Memory. RAM implemented by capacitor circuits (single transistor cells,
typically). Very dense, but requires frequent refreshing since the capacitors slowly discharge (leak),
eventually losing their data contents. In addition, reads typically require rewriting because driving the output
lines also discharges the capacitors. Refresh is sometimes implemented internally by parallel read/write.

E ECC—Error Correcting Code. A system in which data words (esp. memory) are extended with a few extra bits
such that some number of bit errors can be detected and some (smaller) number of bit errors can be
corrected. Typically done on 64-bit words with 1 bit error correction and 2 bit error detection because a simple
scheme requires only 8 additional bits, thereby taking no more storage than byte-parity and enabling the use
of the same memory DIMMs.

EIP—Extended Instruction Pointer. The architectural 32-bit register in an x86 (a.k.a. IA-32) processor that
holds the address of the currently executing instruction. The lower 16 bits are called the IP or `instruction
pointer'.

EISA—Extended Industry Standard Architecture. A 32-bit peripheral (I/O) bus defined by several companies
in the PC industry as a counterpart to IBM's proprietary MCA bus. Never dominant, it was superseded by the
PCI bus.

F FPR—Floating-Point Register. A register in the floating-point unit. It can contain floating-point data, integer
data, or packed media data. It cannot be used to address memory directly.

FPU—Floating-Point Unit. A part of a modern CPU that contains floating-point registers and implements
floating-point and media operations.

front-side bus—A bus connecting a CPU (or CPU core) to the memory controller/northbridge. Also called
the processor local bus. It is typically CPU-core specific, and may be only conceptual when the northbridge is
physically in the same chip as the CPU core, as in Transmeta products.

G GART—Graphics Address Relocation Table. A facility in modern AGP-enhanced northbridge chips used to
give SW and the graphics accelerator the illusion that they are dealing with contiguous physical memory
which is in fact sparsely allocated out of a page pool by the operating system without regard to contiguity.

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 55

PRELIMINARY INFORMATION
SUBJECT TO CHANGE Glossary

GR—General Register Same as GPR.

GPR—General Purpose Register. An integer register that can be used to contain integer data or memory
addresses. As opposed to dedicated or special-purpose registers such as floating-point registers or special
registers that control the memory subsystem, etc.

H HT(1)—HyperTransport. See LDT.

HT(2)—HyperTransport controller. The unit in the TM8000 Virtual Northbridge that implements the
HyperTransport host bridge.

HW—Hardware

HyperTransport—A new name for LDT.

I ICE—In-Circuit Emulator. A hardware device that allows very low-level debugging of a target system when
controlled by software from a debugging host. It typically allows single stepping of system instructions and
low level operations before and while the operating system and/or BIOS are running.

I/O, IO—Input Output

IOIO—I/O-port I/O. On the x86 architecture, I/O performed by using IO ports, i.e. in and out instructions to
ports. These ports are not memory-mapped. They are an altogether different address space.

IP(1)—Internet Protocol. A low-level network protocol that covers routing and delivery over large area
networks. UDP and TCP are protocols built on top of IP, which is often built on top of Ethernet and other such
protocols.

IP(2)—Intellectual Property. Knowledge protected by trade secret, copyright, or patents. Sometimes used to
describe some synthesizable logic (e.g. Verilog) that provides some modular functionality and that companies
license to other companies for the use in their chips, e.g. an IDE controller.

IRQ—Interrupt request line. Each interrupt request line results in a distinct interrupt vector to the CPU.
Interrupt request lines can be uniquely assigned to devices or shared between devices. When unique, the
interrupt handler can know exactly which device needs service. When shared, the interrupt handler must poll
the devices that share the line to figure out which need service.

ISA(1)—Instruction Set Architecture. The software-visible portion of a CPU's organization. It typically consists
of the resources (e.g. registers), operations (e.g. instructions), and encodings of both that software needs to
use to make use of the computer. On traditional CPU families, what is common between the members of the
family and allows SW to run across the family.

ISA(2)—Industry Standard Architecture. The 16-data-bit, 24-address-bit memory and peripheral (I/O) bus for
the IBM PC-AT—the first with an Intel 286 processor. Until recently, all PCs had one. The trend these days,
especially in laptops, but even on desktops, is to abandon it after moving all legacy devices to the
southbridge.

L L1—Level-1. First level of the cache hierarchy. On the TM8000 there is an L1 data cache and an L1
instruction cache.

L2—Level-2. Second level of the cache hierarchy. On the TM8000 there is a combined data and instruction
L2 cache.

LDT—Lightning Data Transport. A peripheral interconnect fabric designed by AMD to replace the PCI bus
and possibly others (AGP). Logically it is very similar to PCI. Physically it is not a bus at all, but instead a
point-to-point connection. LDT devices can be daisy chained and additional chains can be split from the

TM8x00 Programming and Configuration Guide
September 10, 2003

56 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Glossary

primary chain. It is the TM8000’s primary external interface. During 2001, LDT has been renamed
'HyperTransport'.

LongRun—A Transmeta technology that allows the x86 processor to change operating clock frequency and
supply voltage on the fly to consume as little power as possible while satisfying the computational needs of
the running OS and applications. It is implemented by a combination of HW (SW-controlled frequency and
voltage) and SW (mechanisms and policies for frequency and voltage ramping).

LongRun Advanced Thermal Management—A Transmeta technology

l-value—Left value. A compiler term describing a location written by an assignment statement. Opposed to r-
value which is a value that can be stored into such a location. Thus an assignment consists of an l-value and
an r-value.

M MCA(1)—Machine Check Architecture. An x86 extension that allows diagnostic software to inspect the state
of some internal processor registers when an MCE is raised. It is processor-specific.

MCA(2)—Micro-Channel Architecture. A 32-bit peripheral (I/O) bus defined by IBM to supersede the ISA bus
in the PS2 PC architecture. It was proprietary, and hence other companies came up with a different standard,
EISA, that ultimately proved more popular. The fiasco over MCA marked the end of IBM's dominance of the
PC system architecture.

MCE—Machine Check Exception. An x86 exception raised by an x86 processor when it encounters some
irrecoverable internal condition. It indicates a failure in the processor, not the running program at the time the
fault is raised.

MI—Memory Interface. The unit in the Virtual Northbridge that controls and communicates with the DRAM
DIMMs. It supports only DDR DIMMs.

MMIO—Memory-mapped I/O. Input/output to devices by using accesses to the regular "memory" address
space. Device control registers and buffers are mapped into the "memory" address space and respond to
ordinary reads and writes on the bus by effecting the appropriate action.

MMX—Multi Media eXtensions. SIMD integer extensions to the x86 architecture.

molecule —A VLIW instruction encoding multiple operations that logically occur simultaneously. Each
individual operation is called an atom.

MTRR—Memory Type Range Register. An x86 architectural extension by which the memory attributes of an
access (cacheability) can be described at the physical level -- the address space can be divided into multiple
regions with different cacheability properties for reads and writes. It was introduced by Intel to handle several
problems in earlier systems where the cacheability of an access was known to the northbridge (PAB bits) but
not the processor. It is in effect a processor-local "copy" of the PAB bits and memory top register.

N NaN—Not A Number. An IEEE 754 format floating-point "value" that does not have a numeric value. They
are computed as the masked response to invalid operations (e.g. divide 0 by 0), and also sometimes used for
uninitialized memory. They come in two flavors. Signalling NaNs (SNaN) raise the invalid numeric exception
unconditionally. Quiet NaNs (QNaN) only raise it in certain circumstances. Typical masked response is to
produce quiet NaNs that will propagate through the computation contaminating the result (only comparisons
can eliminate NaNs -- arithmetic produces NaN outputs when given any NaN inputs).

Natural Alignment—A power-of-two-sized memory operand is naturally aligned if the address of the
operand is an integer multiple of the size of the operand. For example a 1-byte-sized operand is always
naturally aligned. An 8-byte-sized operand is naturally aligned only at addresses that are multiples of 8, etc.

NC—Non-cached or Non-cacheable. A memory (load/store) operation that does not go through the cache
subsystem. It may be an operation to an IO port (IOIO), memory mapped IO (MMIO), or a memory-bound

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 57

PRELIMINARY INFORMATION
SUBJECT TO CHANGE Glossary

operation that CMS has decided must follow the NC path in order to guarantee cache coherence in the
system as a whole or for performance reasons.

NMI—Non-Maskable Interrupt. An interrupt that cannot be blocked by software. The x86 NMI is only blocked
by the execution of the SMI handler. Transmeta HW allows blocking x86 NMI, but CMS makes it appear that
it is not blocked except in this circumstance.

normal memory—An x86 address space region where reads and writes (or x86 instruction fetches) can be
optimized and reordered because it corresponds to cacheable DRAM on the memory controller in the
northbridge.

Northbridge—A part of a PC's chip set that implements the memory controller, the DMA engine, and the PCI
bus master. Modern ones also implement AGP. It is connected to the CPU via a non-standard local (or front-
side) bus, and is connected to the southbridge via the PCI bus and a few additional signals.

O OOL(1)—Out-Of-Line subroutine. A subroutine in CMS that implements the functionality of some complex
x86 instruction. Rather than inlining the code in translations and the interpreter, these out of line handlers are
used instead. The OOL doesn't have to implement the complete instruction -- part of it (e.g. loading from the
stack) can be done in line.

OOL(2)—Object Oriented Language. Sometimes used abbreviation for a high-level computer language
whose principal data items are organized as objects with lifetimes and properties independent of the
programs that manipulate them. Often used for languages with message-based invocation semantics and
modularity and encapsulation organized around data instead of code.

OS—Operating System. The main control program of a computer system. It typically multiplexes the
computer's resources (including execution time) among competing application programs and provides
several services to them such as uniform I/O APIs that abstract the details of the individual devices in use.

P PAB—Programmable Attribute Bits. The set of bits in a traditional northbridge that control the access to the
legacy region (640K - 1M), especially in regards to ROM shadowing. The PAB bits allow reads and writes to
independently be routed to memory or the PCI bus.

PAE—Physical Address Extension. An extension to the x86 architecture by which physical addresses can be
36-bits wide, instead of the usual 32-bits wide. Each PTE/PDE becomes 8 bytes long instead of the usual 4
bytes long, the page tables are 3 levels deep instead of the usual 2 levels, and the large pages (as in PSE)
are 2MB instead of 4MB.

PAT—Physical Attribute Table. An x86 architectural extension by which the memory attributes of an access
(cacheability) can be described at a virtual level instead of physical level. Each virtual to physical mapping
has a memory type index in the relevant PTE that indexes the PAT to produce a memory type that is then
combined with the type from the MTRRs to produce the actual memory type for the access.

PC(1)—Personal Computer. A computer intended to be used by a single person, i.e. traditionally running a
single-user operating system. More commonly, an x86-compatible computer, i.e. what used to be called an
IBM-compatible computer, irrelevant of whether the operating system running on it makes it multi-user or not.

PC(2)—Program Counter. The conceptual register in a processor that holds the address of executing
instructions. In pipelined processors there may not be such a register -- each pipeline stage may have its
own copy. PCs are usually not visible as registers -- they are reified on interrupts/exceptions, and reflected
on resume from exception/interrupt return. In the x86 architecture, the PC is called EIP.

PCI—Peripheral Component Interconnect. The peripheral (I/O) bus of a modern PC. It is a 32-bit bus with
multiple address spaces: The I/O port (IOIO) address space, the ordinary memory-mapped (MMIO) address
space, and the configuration address space. It was first introduced in the PC architecture by Intel with the
Pentium processor, to rationalize and standardize the multiple peripheral buses then extant (VESA local bus,
EISA, MCA, ISA). Although memory-like devices can be added to the bus, this is unusual, and memory is

TM8x00 Programming and Configuration Guide
September 10, 2003

58 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Glossary

typically elsewhere on a system. The system's northbridge typically connects to both memory and the PCI
bus, but the memory is not on the PCI bus, although accessible from it by using DMA.

PDE—Page Directory Entry. A data structure in the page tables that aggregates a collection of virtual to
physical mappings. It does not describe any virtual to physical mapping itself, but allows the page table
walker to find the individual mappings. In the usual two-level x86 page table structure, the PDEs are the level
between the root and the PTEs.

PGE—Page Global Extension. An extension to the x86 architecture by which specially-marked 'global' virtual
to physical mappings survive TLB invalidations and can only be invalidated explicitly.

PIC—Programmable Interrupt Controller. Traditionally, a device on a PC's motherboard that multiplexed
interrupts to the CPU. These days the PIC is implemented as part of modern southbridges, and not as
separate components.

PIO—Programmed I/O (input/output). A way of doing I/O where the CPU actively executes instructions to
perform the actual transfer of data, as opposed to DMA, where the CPU is passive: the transfer of data is
done by an asynchronous device without any CPU instructions needed except to set up the transfer.

PSE—Page Size Extensions. An extension to the x86 architecture by which virtual pages can be either 4MB
(large pages) or the usual 4KB. Virtual to physical mappings for large pages take the place of PDEs in the
page tables.

PSE-36—Page Size Extensions - 36 bits. An extension to the x86 architecture that combines features of PSE
and PAE. The PTEs and PDEs remain as in the normal 2-level page tables, but the 4MB pages can be
mapped to a full 36-bit address space, instead of the usual 4KB address space.

PTE—Page Table Entry. A data structure in the page tables that describes the virtual to physical mapping for
a single virtual page. In the usual multi-level x86 page table structure, the PTEs are the level farthest from
the root.

Q QNaN—Quiet NaN. See NaN.

R RAM—Random Access Memory. The main memory of a computer system, addressable in no particular
order.

ROM—Read-Only Memory. A memory-like device that can only be read and not written. Most modern ROMs
are not really ROMs at all, but Flash ROMs or EEPROMs. EEPROMs are electrically-erasable
programmable read-only memories, i.e. memory-like devices that are easy to read and difficult -- but possible
-- to write. Flash ROMs are similar to EEPROMs that cannot be erased at the individual byte or word level but
can be erased in units of moderate to large sectors. These EEPROMs and Flash ROMs are treated largely
like true ROMs, except when their contents are upgraded, which is a very infrequent operation. Programming
them (i.e. writing to them), is usually called "flashing", perhaps because early EPROMS (erasable
programmable read-only memories) could only be erased by exposing them to ultra violet light.

r-value—Right value. See l-value.

S SDR—Single Data Rate. A bus protocol technique in which data is transferred once per clock cycle, typically
on rising edges of the clock. It is the counterpart to DDR in which data is trasferred twice per cycle.

serialization —The property that prevents two operations from being either reordered or carried out
simultaneously. There are many forms of serialization in the x86 architecture, including but not restricted to
code serialization and data serialization.

serializing instruction—An instruction that has some serialization property with respect to other instructions.
x86 serializing instructions can be strong or weak.

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 59

PRELIMINARY INFORMATION
SUBJECT TO CHANGE Glossary

SIMD—Single Instruction Multiple Data. A form of obtaining parallelism that consists on having single
instructions operate on multiple data items simultaneously. The operations are usually uniform. The Intel
variants of this, called MMX, SSE, and SSE2 divide large (64-bit or 128-bit) registers into multiple same-sized
fields, and the operations operate on all the fields independently.

SMC—Self-Modifying Code. Code that either modifies its own instructions (the proper usage), or has its
instructions modified by other pieces of code (the general usage). Particular common patterns are Bit-blit
generators, which frequently generate code on the fly in a common buffer, dynamic compilers (such as CMS
itself), and runtime patching of immediates.

SMI—System Management Interrupt. A special interrupt in an x86 CPU that causes the CPU to enter SMM.

SMM—System Management Mode. An extension to the x86 architecture that allows BIOSs to control
peripheral devices without OS awareness. Often used to implement power-management functions such as
powering off and restarting disks without the OS being aware. SMM has access to regions of memory
(SMRAM) that the regular OS cannot address. SMM is the state of the processor when servicing an SMI.

SMP—Simultaneous Multi-Processor. A multi-CPU computer system (a multicomputer) where the CPUs
logically share memory so that ordinary accesses from one CPU are visible from other CPUs without
additional software support. The rules for serialization and ordering of memory references and visibility
among the multiple CPUs can vary a lot. The memory may be either uniformly accessible or non-uniformly
accessible, where logically there is no difference, but there is a large performance difference depending on
the locality of the memory being accessed.

SMRAM—System Management RAM. An alternate address space, or extension of the regular x86 physical
address space, used in SMM.

SNaN—Signalling NaN. See NaN.

Southbridge—A part of a PC's chip set that implements several sundry functions: bridge between the PCI
and ISA buses, power-control of the platform, IDE bus controllers, serial, parallel, mouse, and keyboard ports,
USB controllers, audio devices, ROM control, etc. Connected to the Northbridge via a PCI or LDT interface
and to both the northbridge and the CPU through additional signals.

SRAM—Static Random Access Memory. RAM implemented out of storage cells that do not decay if
unattended. Much less dense than DRAM, but typically much faster and not requiring refresh. Common
modern designs are made out of 6 or 4 transistor cells (6T or 4T).

SSE—Streaming SIMD Extensions. SIMD floating-point extensions to the x86 architecture. There are two
levels: SSE proper which introduced SIMD 32-bit (single precision) floating-point operations, and SSE2 which
introduced SIMD 64-bit (double precision) floating-point operations. The extensions also include integer and
MMX operations on the new XMM registers.

SSM—State Save Map. Data structure in SMRAM where an x86 CPU saves its state on entry to SMM and
from where it restores it on exit from SMM.

sticky bit—A bit in a register is said to be sticky when it records a condition in a monotonic way. That is,
when the condition arises, it changes state, and does not change back even if the condition disappears. It is
only changed back by explicit software intervention.

STPCLK—Stop Clock. A (logical) signal in a PC system originating in the southbridge and used to stop the
CPU at an appropriate point. Such stop can be a prelude to power down, or a temporary stop due to power
management events. STPCLKs can be expected, when the CPU initiates a power management transition or
shutdown, or unexpected, when the southbridge initiates clock throttling often caused by overheating.

STPGRNT—Stop Grant. A (logical) signal in a PC system originating in a CPU and used to inform the
southbridge that a preceding STPCLK has been honored. Typically the STPGRNT must follow quickly after
the STPCLK because southbridges are intolerant of many intervening transactions.

TM8x00 Programming and Configuration Guide
September 10, 2003

60 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Glossary

strapping options—Hardware interface pins whose logic value is sampled at reset time by hardware in
order to choose an option among initial configuration possibilities. Examples of such strapping options are
processor number for SMP systems, device ID selection addresses for identical devices on a bus, etc.

strongly-serializing instruction—A serializing instruction that constitutes an absolute barrier to previous
and following instructions or memory operations. All previous instructions are guaranteed to have completed
by the time that the strongly serializing instruction executes, and all following instructions are guaranteed not
to have started until after the strongly serializing instruction completes. Strongly serializing instructions cause
write combiners to be drained.

SW—Software

T TBD—To Be Determined. Something not yet fully understood or specified.

thread—A control-flow and register state within an address space. Several threads can execute within a
single process. Each thread typically has its own logical register set and stack but shares the address space
and O/S resources with other threads in the same process. Sometimes threads also have thread-local data.
Win32 threads and POSIX threads are the most common thread APIs.

TLB—Translation Look-aside Buffer. A hardware (and sometimes software) structure used to accelerate
memory references in a paged environment. It is a cache of mappings from virtual addresses to physical
addresses and some attributes of the mappings used to avoid walking the page tables on every access.
These virtual to physical mappings are called translations, but are not to be confused with the instruction
translations that CMS produces.

trip count—The number of iterations that a loop executes when entered from outside. Integer loops often
have very low trip counts, in the vicinity of 3. Floating-point and media loops often have very high trip counts
(hundreds of thousands or millions). Many loop optimizations are only worthwhile if the typical trip count is
moderately high.

U ULP—Unit of Least Precision. The least significant bit position in a floating-point number. Often used to
describe the accuracy of the implementation of some floating-point function (e.g. transcendentals). If the
accuracy is within 1/2 ULP, the answer is exact. If within 1 ULP, then a result is off by at most the quantity
that a bit in the least significant position of the mantissa would represent, and so on.

UMA—Unified Memory Architecture. A system setup where all graphics memory (frame buffer and off frame
storage for display lists, textures, etc.) lives in system memory -- directly accessible by the CPU, rather than
in dedicated memory that the CPU cannot directly access. In other contexts, the acronym stands for 'uniform
memory architecture', as opposed to 'non uniform memory architecture'.

USB—Universal Serial Bus. A bus in modern PCs that is distinguished by using a serial protocol over a small
number of wires. Several devices that used to be connected through dedicated interfaces are now connected
to the computer through this bus.

V VICE—Virtual In-Circuit Emulator. A software component of Code Morphing software, coupled with a
software program running on a debugging host that together emulate a true x86 ICE.

Visible interrupts—Interrupts that are not invisible interrupts.

VLIW—Very Long Instruction Word. A style of ISA characterized for large (in bits) instructions that group
several independent operations that are executed in parallel and atomically.

VNB—Virtual North Bridge. A software component of CMS that logically emulates the registers and
operations of a physical northbridge chip, mapping them to whatever hardware the Transmeta product
implements directly.

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 61

PRELIMINARY INFORMATION
SUBJECT TO CHANGE Glossary

VSB—Virtual South Bridge. A software component of CMS that logically emulates the registers and
operations of a physical southbridge chip, mapping them to whatever hardware the Transmeta product
implements directly.

W weakly-serializing instruction —A serializing instruction that has some reordering properties with respect to
some other instructions but not all. Thus some instructions are serialized with respect to a weakly serializing
instruction, but not all instructions are.

X x86—Of or compatible with 80x86 processors manufactured by Intel. Common x86 platforms include Intel’s
Pentium processors, AMD Athlon processors, and Transmeta processors.

X-bus —A derivative of the 8088's original bus. The 8088 was a variant of the 8086 (first processor in the
x86 architecture line from Intel) with only an 8-bit-wide data bus (20-bit addresses). It is still often found
hanging off the southbridge in a PC system to connect to the flash ROM containing the BIOS, and a few very
simple devices such as the keyboard controller.

TM8x00 Programming and Configuration Guide
September 10, 2003

62 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Glossary

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 63

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Index

A
ap_esr_io_dly_ctl 41

B
BIOS, overview 13
boot code, overview 13
bpctrl 35

C
checksum 25
cms_main_num_blocks 31
cms_main_start_block 30
cms_memory_size 28
cms_recovery_num_blocks 31
cms_recovery_start_block 31
Code Morphing™ software image 11

configuration
overview 14
ROM sections 14

creating, overview 15
debugging environment 11
different from other products 11
hardware environment 11
overview 11
services, overview 11
software environment 13

BIOS overview 13
boot code overview 13
diagram 13
memory overview 13
OEM configuration table overview 13

configuration overview 14
configuration, memory 17
core_voltage 38
cpu_feature 20, 27
cpu_type 24
creating Code Morphing software image 15
cspec_lim 40

D
dc_enable 41
DDR memory, overview 13
debugging environment 11
DIMM slots 17
drive strength, memory configuration and 21

F
format_rev_major 24
format_rev_minor 25

G
group_to_max_loads 21, 33
group_to_min_loads 21, 32

H
hardware environment 11
header 24

I
ifctrl 35
image, Code Morphing software 11
io_port_debug_led 29
it_ena 41

L
LongRun, settings 33
longrun_frequencies 33
longrun_manifold 39
longrun_min_frequency 40
longrun_pll_relock 38

M
mc_core_clkdiv 37
mc_elroy_clockdiv 37
mc_misc_mode 37
mc_pll_mode 37
mem_freq_max 20, 30
mem_freq_min 20, 30
mem_probe_spd 18, 28
mem_slot_to_clocks 18, 28
mem_smbus_spd_base_addr 18, 28
mem_spd 19, 29
memory configuration 17

DIMM slots 17
memory, overview 13
mode_da 35, 36
mode_da_high_v_range 35
mode_da_high_v_range_min_v 36
mode_da_low_v_range 35, 36
mode_tlb 36

TM8x00 Programming and Configuration Guide
September 10, 2003

64 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Index

mode_wq 36

O
OEM configuration table 23

OEM-Managed Fields 26
cms_main_num_blocks 31
cms_main_start_block 30
cms_memory_size 28
cms_recovery_num_blocks 31
cms_recovery_start_block 31
cpu_feature 20, 27
group_to_max_loads 21, 33
group_to_min_loads 21, 32
io_port_debug_led 29
longrun_frequencies 33
mem_freq_max 20, 30
mem_freq_min 20, 30
mem_probe_spd 18, 28
mem_slot_to_clocks 18, 28
mem_smbus_spd_base_addr 18, 28
mem_spd 19, 29
rom_size_bios 30
rom_size_total 30
sclkdly_to_mem_frequency 20, 32
upgrade_oem_id0 31
upgrade_oem_id1 31
upgrade_options 32
upgrade_virtual_rom_model 32
vr_100mV_ramp_time 26
vr_voltage 27

overview 13
Read-Only Fields

checksum 25
cpu_type 24
format_rev_major 24
format_rev_minor 25
header 24
table_size 25
upgrade_compatibility_version 25

Transmeta SKU Fields
ap_esr_io_dly_ctl 41
bpctrl 35
core_voltage 38
cspec_lim 40
dc_enable 41
ifctrl 35
it_ena 41
longrun_manifold 39
longrun_min_frequency 40
longrun_pll_relock 38
mc_core_clkdiv 37
mc_elroy_clockdiv 37
mc_misc_mode 37
mc_pll_mode 37
mode_da 35, 36
mode_da_high_v_range 35
mode_da_high_v_range_min_v 36
mode_da_low_v_range 35
mode_da_low_v_range_max_v 36
mode_tlb 36
mode_wq 36
pcctl 41
pm_data_mode 37
pm_tag_model 37

rd_dqsdly_temp_adjust 38
sc_cs 41
sc_laconfig 36
sc_ltconfig 36
sku_flags 35
vc_full 40
vc_priority 40
vc_threshold 40
volt_cons_mult 42
volt_max 42
volt_min 42
wr_dqdly_temp_adjust 38

OEM-Managed Fields
cms_main_num_blocks 31
cms_main_start_block 30
cms_memory_size 28
cms_recovery_num_blocks 31
cms_recovery_start_block 31
cpu_feature 20, 27
group_to_max_loads 21, 33
group_to_min_loads 21, 32
io_port_debug_led 29
longrun_frequencies 33
mem_freq_max 20, 30
mem_freq_min 20, 30
mem_probe_spd 18, 28
mem_slot_to_clocks 18, 28
mem_smbus_spd_base_addr 18, 28
mem_spd 19, 29
rom_size_bios 30
rom_size_total 30
sclkdly_to_mem_frequency 20, 32
upgrade_oem_id0 31
upgrade_oem_id1 31
upgrade_options 32
upgrade_virtual_rom_model 32
vr_100mV_ramp_time 26
vr_voltage 27

overview 11

P
pcctl 41
pm_data_mode 37
pm_tag_model 37

R
rd_dqsdly_temp_adjust 38
Read-Only Fields

checksum 25
cpu_type 24
format_rev_major 24
format_rev_minor 25
header 24
table_size 25
upgrade_compatibility_version 25

reference documents 9
ROM sections 14
rom_size_bios 30
rom_size_total 30

S
sc_cs 41
sc_laconfig 36

TM8x00 Programming and Configuration Guide
September 10, 2003

Transmeta Proprietary Information Provided Under Nondisclosure Agreement 65

PRELIMINARY INFORMATION
SUBJECT TO CHANGE Index

sc_ltconfig 36
sclkdly_to_mem_frequency 20, 32
services overview 11
setting LongRun values 33
sku_flags 35
software environment 13

diagram 13
SPD, memory overview 13

T
table_size 25
tools for creating image, overview 15
Transmeta SKU Fields

ap_esr_io_dly_ctl 41
bpctrl 35
core_voltage 38
cspec_lim 40
dc_enable 41
ifctrl 35
it_ena 41
longrun_manifold 39
longrun_min_frequency 40
longrun_pll_relock 38
mc_core_clkdiv 37
mc_elroy_clockdiv 37
mc_misc_mode 37
mc_pll_mode 37
mode_da 35, 36
mode_da_high_v_range 35
mode_da_high_v_range_min_v 36
mode_da_low_v_range 35, 36
mode_tlb 36
mode_wq 36
pcctl 41
pm_data_mode 37
pm_tag_model 37
rd_dqsdly_temp_adjust 38
sc_cs 41
sc_laconfig 36
sc_ltconfig 36
sku_flags 35
vc_full 40
vc_priority 40
vc_threshold 40
volt_cons_mult 42
volt_max 42
volt_min 42
wr_dqdly_temp_adjust 38

U
upgrade_compatibility_version 25
upgrade_oem_id0 31
upgrade_oem_id1 31
upgrade_options 32
upgrade_virtual_rom_model 32

V
vc_full 40
vc_priority 40
vc_threshold 40
volt_cons_mult 42
volt_max 42
volt_min 42

TM8x00 Programming and Configuration Guide
September 10, 2003

66 Transmeta Proprietary Information Provided Under Nondisclosure Agreement

PRELIMINARY INFORMATION
SUBJECT TO CHANGE

Index

vr_100mV_ramp_time 26
vr_voltage 27

W
wr_dqdly_temp_adjust 38

	Software Configuration Guide
	Directory of Contents
	Directory of Tables
	Directory of Figures
	Code Morphing Software Overview
	Code Morphing Software Image
	2.1 Hardware Environment
	2.2 Software Environment
	2.3 Configuration Overview
	2.3.1 ROM Sections
	2.3.2 Creating a CMS Image

	Memory Configuration
	3.1 DIMM Slots
	3.2 Required Memory Configuration
	3.3 Optional Memory Configuration

	OEM Configuration Table
	4.1 Read-Only Fields
	4.2 OEM-Managed Fields
	4.3 Transmeta SKU Fields

	Code Morphing Software: Initial State
	Code Morphing Software: Examples
	Code Morphing Software: Checklist
	POST Codes
	Recommended Reading
	Glossary
	Index

